

# Koneru Lakshmaiah Education Foundation (Category -1, Deemed to be University estd. u/s. 3 of the UGC Act, 1956)

Accredited by NAAC as 'A++' ❖Approved by AICTE ❖ ISO 21001:2018 Certified Campus: Green Fields, Vaddeswaram - 522 302, Guntur District, Andhra Pradesh, INDIA. Phone No. +91 8645 - 350 200; www.klef.ac.in; www.klef.edu.in; www.kluniversity.in Admin Off: 29-36-38, Museum Road, Governorpet, Vijayawada - 520 002. Ph: +91 - 866 - 3500122, 2576129

#### KL CENTRE FOR DISTANCE & ONLINE EDUCATION

#### **ANNEXURE 1B**

|       |                                                  |     | KL CENT        | TRE FOR DISTANCE 8                   | S ON      | ILINI | E ED | UCA | TIOI | N   |    |             |
|-------|--------------------------------------------------|-----|----------------|--------------------------------------|-----------|-------|------|-----|------|-----|----|-------------|
|       |                                                  |     |                | MCA PROGRAM                          | STRU      | JCTI  | JRE  |     |      |     |    |             |
| SEM   | SL<br>NO                                         | САТ | COURSE<br>CODE | COURSE TITLE                         | SNA<br>ME | L     | Т    | Р   | S    | Cr  | СН | PRE-<br>REQ |
| SEM 1 | 1 AUC 23UC5201 PROFESSIONAL COMMUNICATION SKILLS |     | PCS            | 0                                    | 0         | 4     | 0    | 0   | 4    | NIL |    |             |
|       | 2                                                | PCC | 23CA5101<br>O  | COMPUTER NETWORKS AND COMMUNICATIONS | CNC       | 3     | 0    | 2   | 0    | 4   | 5  | NIL         |
|       | 3                                                | PCC | 23CA5102<br>O  | DATA STRUCTURES AND<br>ALGORITHMS    | DSA       | 3     | 0    | 2   | 4    | 5   | 9  | NIL         |
|       | 4                                                | PCC | 24CA5103<br>O  | OPERATING SYSTEMS<br>CONCEPTS        | OSC       | 3     | 1    | 0   | 0    | 4   | 4  | NIL         |
|       | 5                                                | PCC | 23CA5104<br>O  | DATABASE SYSTEMS                     | DS        | 3     | 0    | 2   | 4    | 5   | 9  | NIL         |
|       |                                                  |     | 1              | TOTAL                                |           | 12    | 1    | 10  | 8    | 18  | 31 |             |

| SEM 2 | 6     | PCC   | 23CA5205<br>O                  | Object Oriented<br>Programming           | ООР  | 3  | 0 | 2 | 4 | 5  | 9  | NIL  |
|-------|-------|-------|--------------------------------|------------------------------------------|------|----|---|---|---|----|----|------|
| _     | 7     | P(.(. | 23CA5206<br>O                  | DATAANALYTICS                            | DA   | 3  | 0 | 2 | 0 | 4  | 5  | NIL  |
|       | 8     | PCC   | 23CA5207<br>O                  | COMPREHENSIVE<br>SOFTWARE<br>ENGINEERING | CSE  | 2  | 1 | 0 | 0 | 3  | 3  | NIL  |
|       | 9     | PEC   |                                | PE1                                      | PE   | 3  | 0 | 2 | 4 | 5  | 9  | NIL  |
|       | 10    | PEC   |                                | PE2                                      | PE   | 3  | 0 | 0 | 0 | 3  | 3  | NIL  |
|       | TOTAL |       |                                |                                          |      | 14 | 1 | 6 | 8 | 20 | 29 |      |
| 15    | 11    | DD1   | 24IE6101                       |                                          |      |    |   | , | , |    |    | NIII |
|       | 11    | PRI   | O                              | INTERNSHIP                               | INT1 | 0  | 0 | 6 | 0 | 3  | 6  | NIL  |
| SEM3  | 12    |       | O                              | WEB TECHNOLOGIES                         | WT   | 3  | 0 | 2 | 4 | 5  | 9  | NIL  |
| SEM3  | 12    | PCC   | O<br>24CA6108<br>O             |                                          |      |    |   |   |   |    |    |      |
| SEM3  | 12    | PCC   | O<br>24CA6108<br>O<br>23IE5201 | WEB TECHNOLOGIES ESSENTIALS OF           | WT   | 3  | 0 | 2 | 4 | 5  | 9  | NIL  |

|           | 16             | PEC                              |                         | PE5                                                                          | PE            | 3     | 0      | 2     | 0     | 4     | 5     | NIL                   |
|-----------|----------------|----------------------------------|-------------------------|------------------------------------------------------------------------------|---------------|-------|--------|-------|-------|-------|-------|-----------------------|
|           | 17             | PRI 24IE                         | 1020                    | TERM PAPER                                                                   | TP            | 0     | 0      | 4     | 0     | 2     | 4     | NIL                   |
|           | TOT<br>AL      |                                  |                         |                                                                              |               | 13    | 1      | 16    | 8     | 24    | 38    |                       |
| SEM       | 18             | OEC                              |                         | OE1                                                                          | OE            | 4     | 0      | 0     | 0     | 4     | 4     | NIL                   |
|           | 19             | OEC                              |                         | OE2                                                                          | OE            | 4     | 0      | 0     | 0     | 4     | 4     | NIL                   |
|           | 20             | PRI 24IE<br>O                    | 5203                    | PROJECT                                                                      | PRO           | 0     | 0      | 20    | 0     | 10    | 20    | NIL                   |
|           | тота           | ۸L                               |                         |                                                                              |               | 8     | 0      | 20    | 0     | 18    | 28    |                       |
|           |                | GI                               | RAND                    | TOTAL                                                                        |               | 47    | 3      | 52    | 24    | 80    | 126   |                       |
| SI<br>N ( | Categor<br>y   | Course<br>Code                   |                         | Course Title                                                                 | Shor<br>Nam   |       | Т      | P     | S     | Cr    | СН    | Pre-<br>Requisit<br>e |
|           |                |                                  | P                       | ROFESSIONAL ELECTIVE – AR                                                    | TIFICIA       | L INT | ELLIGE | NCE   |       |       |       |                       |
| 1         | PE             |                                  |                         |                                                                              |               |       |        |       |       |       |       |                       |
|           | PE             | 23CA52A1                         | o Ap                    | plied Mahine Learning                                                        | AML           | 3     | 0      | 2     | 4     | 5     | 9     | NIL                   |
| 2         | PE             |                                  | 0 2                     | plied Mahine Learning                                                        |               | 3     | 0      | 2     | 4     | 5     | 9     | NIL NIL               |
| 3         |                | 23CA52A2                         | O PA                    |                                                                              | AML           |       |        |       |       |       |       |                       |
|           | PE             | 23CA52A2                         | O PA                    | TTERN RECOGNITION                                                            | AML<br>PR     | 3     | 0      | 0     | 0     | 3     | 3     | NIL                   |
| 3         | PE<br>PE       | 23CA52A2<br>23CA61A3<br>23CA61A4 | O PA  O CO  Ap          | MPUTER VISION  plied Deep Learning  PLICATIONS OF NATURAL  NGUAGE PROCESSING | AML PR CV ADL | 3 3 3 | 0 0 0  | 0 2   | 0 4   | 3 5   | 3     | NIL<br>NIL            |
| 3         | PE<br>PE<br>PE | 23CA52A2<br>23CA61A3<br>23CA61A4 | O PA  O CO  Ap          | MPUTER VISION  plied Deep Learning  PLICATIONS OF NATURAL                    | AML PR CV ADL | 3 3 3 | 0 0 0  | 0 2 0 | 0 4 0 | 3 5 3 | 3 9 3 | NIL<br>NIL<br>NIL     |
| 3         | PE<br>PE<br>PE | 23CA52A2<br>23CA61A3<br>23CA61A4 | O PATO CO API API O LAN | MPUTER VISION  plied Deep Learning  PLICATIONS OF NATURAL  NGUAGE PROCESSING | AML PR CV ADL | 3 3 3 | 0 0 0  | 0 2 0 | 0 4 0 | 3 5 3 | 3 9 3 | NIL<br>NIL<br>NIL     |

| 8  | PE | 23CA61D3O | DATA VISUALIZATION<br>TECHNIQUES      | DVT     | 3    | 0    | 2 | 4 | 5 | 9 | NIL |
|----|----|-----------|---------------------------------------|---------|------|------|---|---|---|---|-----|
| 9  | PE |           | STATISTICS FOR DATA SCIENCE           | SDS     | 3    | 0    | 0 | 0 | 3 | 3 | NIL |
| 10 | PE | 23CA61D5O | GRAPH AND WEB ANALYTICS               | GWA     | 3    | 0    | 2 | 0 | 5 | 9 | NIL |
|    |    |           | PROFESSIONAL ELECTIVE – C             | LOUD TI | ECHN | OLOG | Υ |   |   |   |     |
| 11 | PE | 23CA52C1O | CLOUD COMPUTING                       | СС      | 3    | 0    | 2 | 4 | 5 | 9 | NIL |
| 12 | PE | 23CA52C2O | CLOUD INFORMATION SECURITY            | 'CIS    | 3    | 0    | 0 | 0 | 3 | 3 | NIL |
| 13 | PE | 23CA61C3O | CLOUD ARCHITECTURES                   | CA      | 3    | 0    | 2 | 4 | 5 | 9 | NIL |
| 14 | PE | 23CA61C4O | Cloud and Serverless<br>Computing     | CSC     | 3    | 0    | 0 | 0 | 3 | 3 | NIL |
| 15 | PE | 23CA61C5O | Cloud Web Services                    | CWS     | 3    | 0    | 2 | 0 | 5 | 9 | NIL |
| •  |    |           | PROFESSIONAL ELECTIVE                 | – CYBER | SECU | RITY |   |   |   |   |     |
| 16 | PE | 23CA52S1O | CYBER SECURITY AND ETHICAL<br>HACKING | CSEH    | 3    | 0    | 2 | 4 | 5 | 9 | NIL |
| 17 | PE | 23CA52S2O | CYBER FORENSICS                       | CF      | 3    | 0    | 0 | 0 | 3 | 3 | NIL |
| 18 | PE | 23CA61S3O | MALWARE ANALYSIS                      | ML      | 3    | 0    | 2 | 4 | 5 | 9 | NIL |
| 19 | PE | 23CA61S4O | SECURITY GOVERNANCE<br>AND MANAGEMENT | SGM     | 3    | 0    | 0 | 0 | 3 | 3 | NIL |
| 20 | PE | 23CA61S5O | CLOUD SECURITY                        | CS      | 3    | 0    | 2 | 0 | 5 | 9 | NIL |

### PROFESSIONAL COMMUNICATION SKILLS (PCS)

| COURSE | 24UC5201O | MODE | OL | LTPS | 0-0-4-0 | PRE-      | NIL |
|--------|-----------|------|----|------|---------|-----------|-----|
| CODE   |           |      |    |      |         | REQUISITE |     |

| CO# | CO Description                                                                                                        | BTL | PO Mapping |
|-----|-----------------------------------------------------------------------------------------------------------------------|-----|------------|
| CO1 | To develop and demonstrate principles of listening, speaking,                                                         | 3   | PO 5       |
|     | reading and writing in various functional contexts                                                                    |     |            |
| CO2 | To demonstrate different types of personal and professional skills and apply them for growth in professional zone.  4 | 3   | PO 5       |

| CO3 | Apply the concepts of Mathematical Principles to solve problems on Arithmetic, Algebra & Geometry to improve problem solving ability. | 3 | PO5 |
|-----|---------------------------------------------------------------------------------------------------------------------------------------|---|-----|
| CO4 | Apply the concepts and using Logical thinking to solve problems on verbal & Non-Verbal Reasoning to develop Logical thinking skills.  | 3 | PO5 |

| Syllabus |                                                                                                                                                                                                                                                                        |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Module 1 | A)Vocabulary: Synonyms, Antonyms and One-word substitutes, (B)Reading comprehension, Critical reading, (C) Writing skills: Email writing, report writing and paragraph writing (D) Listening/Speaking Skills: listen & speak, Functional grammar                       |
| Module 2 | (A) Personal Skills: Intra & Interpersonal skills (B) Assertiveness (C) Group Discussion (D) Resume writing (E) Video resumes (F) Interview skills                                                                                                                     |
| Module 3 | Simple Equations, Ratio & Partnership, Averages, Percentages, Profit & Loss, Simple & Compound Interest, Numbers, Quadratic Equations & Inequalities, Time & Work, Time, Speed & Distance, Permutations & Combinations, Probability, Mensuration, Data Interpretation. |
| Module 4 | Syllogism, Logical Venn Diagrams, Cubes & Dice, Number& letter series, Number, letter & word Analogy, Odd Man Out, Coding & Decoding, Blood Relations, Directions, clocks, calendars, Number, ranking & Time sequence test, Seating Arrangements, Data Sufficiency.    |

#### **Reference Books:**

| Sl | Title                                                               | Author(s)                          | Publisher                 | Year |
|----|---------------------------------------------------------------------|------------------------------------|---------------------------|------|
| No |                                                                     |                                    |                           |      |
| 1  | The Business Student's Handbook:<br>Skills for Study and Employment | Fisher, Julie and<br>Bailey, Peter | Cengage<br>Learning       | 2017 |
| 2  | The Complete Guide to mastering soft skills for workplace success   | Adams, John                        | Adams media               | 2019 |
| 3  | Writing Tools: 55 Essential Strategies for Every Writer             | Roy Peter Clark                    | Little, Brown and Company | 2006 |
| 4  | Quantitative Aptitude                                               | R. S. Agarwal                      | SCHAND                    |      |
| 5  | A Modern Approach to Verbal Reasoning                               | R. S. Agarwal                      | SCHAND                    |      |

#### SYLLABUS OF COURSES UNDER

#### PROFESSIONAL CORE

#### COMPUTER NETWORKS AND COMMUNICATIONS(CNC)

| COURSE CODE | 24CA5101O | MODE | OL | LTPS | 3-0-2-0 | PRE-      | NIL |
|-------------|-----------|------|----|------|---------|-----------|-----|
|             |           |      |    |      |         | REQUISITE |     |

| CO# | CO Description | 5 | BTL | PO Mapping |
|-----|----------------|---|-----|------------|
|-----|----------------|---|-----|------------|

| CO1 | Understand the fundamentals of computer networks and data        | 2 | PO1 |
|-----|------------------------------------------------------------------|---|-----|
|     | communication                                                    |   |     |
| CO2 | Choose the issues in Data Link Layer, IEEE Standards in networks | 3 | PO2 |
| CO3 | Analyse Internet Transport Protocols and different types of      | 4 | PO2 |
|     | protocols                                                        |   |     |
| CO4 | Examine various types of Network Devices and different types of  | 4 | PO3 |
|     | Networks                                                         |   |     |
| CO5 | Develop networking solutions using Routing Algorithms            | 5 | PO5 |

| Module 1 | Introduction to Computer Networks: Introduction, Network Hardware, Network Software, Reference Models, Data Communication Services & Network Examples, Internet Based Applications, Data Communications: Transmission Media, Wireless Transmission, Multiplexing, Switching, Transmission in ISDN, Broad Band ISDN, ATM Network. Data Link Control, Error Detection & Correction, Sliding Window Protocols |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Module 2 | LANs &MANs: IEEE Standards for LANs & MANs-IEEE Standards 802.2, 802.3, 802.4, 802.5,802.6, High Speed LANs. Design Issues in Networks: Routing Algorithms, Congestion Control Algorithms, Network Layer in the Internet, IP Protocol, IP Address, Subnets, and Internetworking.                                                                                                                           |
| Module 3 | Internet Transport Protocols: Transport Service, Elements of Transport Protocols, TCP and UDP Protocols, Quality of Service Model, Best Effort Model, Network Performance Issues. Overview of DNS, SNMP, Electronic Mail, FTP, TFTP, BOOTP, HTTP Protocols, World Wide Web, Firewalls.                                                                                                                     |
| Module 4 | Network Devices: Overview of Repeaters, Bridges, Routers, Gateways, Multiprotocol Routers, routers, Hubs, Switches, Modems, Channel Service Unit CSU, Data Service Units DSU, NIC, Wireless Access Points, Transceivers, Firewalls, Proxies. Overview of Cellular Networks, Adhoc Networks, Mobile Ad-hoc Networks, Sensor Networks                                                                        |

## Textbooks/Reference Books:

| S1 | Title                               | Author(s)         | Publisher               | Year |
|----|-------------------------------------|-------------------|-------------------------|------|
| No |                                     |                   |                         |      |
| 1  | Computer Networks                   | Andrews S         | 5 <sup>th</sup> Edition | 2010 |
|    |                                     | Tanenbaum         |                         |      |
| 2  | Data Communications and Networking  | Behrouz A         | 2 <sup>nd</sup> Edition | 2017 |
|    | -                                   | Forouzan          |                         |      |
| 3  | Computer Networks                   | Mayank Dave       |                         | 2012 |
|    |                                     |                   |                         |      |
| 4  | Computer Networks, A System         | Larry L Peterson  | 5 <sup>th</sup> Edition | 2011 |
|    | Approach                            | and Bruce S Davie |                         |      |
| 5  | An Engineering Approach to Computer | S.Keshav          | 2 <sup>nd</sup> Edition | 2002 |
|    | Networks                            |                   |                         |      |
| 6  | Understanding Communications and    | W.A. Shay,        | 3 <sup>rd</sup> Edition | 2004 |
|    | Networks                            | Thomson           |                         |      |

### DATA STRUCTURES AND ALGORITHMS (DSA)

| COURSE | 24CA5102O | MODE | OL | LTPSIN | 3-0-2-4 | PRE-      | NIL |
|--------|-----------|------|----|--------|---------|-----------|-----|
| CODE   |           |      |    |        |         | REQUISITE |     |

| CO# | CO Description                                                                               | BTL | PO      |
|-----|----------------------------------------------------------------------------------------------|-----|---------|
|     |                                                                                              |     | Mapping |
| CO1 | Outline basic data structures such as arrays, pointers                                       | 2   | PO1     |
| CO2 | Demonstrate the basic structure such as stacks and queues.                                   | 2   | PO2     |
| CO3 | Solve problem involving trees and Linked List                                                | 3   | PO2,PO4 |
| CO4 | Apply Algorithm for solving problems like sorting, searching, insertion and deletion of data | 3   | PO1,PO4 |
| CO5 | Evaluate applications using control structures for linear and non-<br>linear data structures | 5   | PO6     |
| C06 | Asses the data structure for its functions based on performance metrics.                     | 5   | PO2,PO3 |

| Module 1 | Introduction to Data Structures: Algorithms and Flowcharts, Basics Analysis on Algorithm, Complexity of Algorithm, Introduction and Definition of Data Structure, Classification of Data, Arrays, Various types of Data Structure, Static and Dynamic Memory Allocation, Function, Recursion. Arrays, Pointers and Strings: Introduction to Arrays, Definition, One Dimensional Array and Multidimensional Arrays, Pointer, Pointer to Structure, various Programs for Array and Pointer. Strings. Introduction to Strings, Definition, Library Functions of Strings." |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Module 2 | Stacks and Queue:-Introduction to Stack, Definition, Stack Implementation, Operations of Stack, Applications of Stack and Multiple Stacks. Implementation of Multiple Stack Queues, Introduction to Queue, Definition, Queue Implementation, Operations of Queue, Circular Queue, De-queue and Priority Queue"                                                                                                                                                                                                                                                         |
| Module 3 | Linked Lists and Trees: Introduction, Representation and Operations of Linked Lists, Singly Linked List, Doubly Linked List, Circular Linked List, And Circular Doubly Linked List. Trees: Introduction to Tree, Tree Terminology Binary Tree, Binary Search Tree, Strictly Binary Tree, Complete Binary Tree, Tree Traversal, Threaded Binary Tree, AVL Tree, B Tree, B+ Tree"                                                                                                                                                                                        |
| Module 4 | Graphs: Introduction, Representation to Graphs, Graph Traversals Shortest Path Algorithms. Searching and Sorting: Searching, Types of Searching, Sorting, Types of sorting like quick sort, bubble sort, merge sort, selection sort. Hashing: Hash Function, Types of Hash Functions, Collision, Collision Resolution Technique(CRT), Perfect Hashing"                                                                                                                                                                                                                 |

### **Reference Books:**

| Sl No | Title                             | Author(s)                                 | Publisher                   | Year |
|-------|-----------------------------------|-------------------------------------------|-----------------------------|------|
| 1     | Data structures                   | Tata McGraw-Hill                          | McGraw Hill<br>Education    | 2014 |
| 2     | Data Structures                   | E. Balagurusamy                           | McGraw Hill<br>Education    | 2017 |
| 3     | Algorithms II                     | Robert Sedgewick and Kevin Wayne          | Pearson<br>Education        | 2014 |
| 4     | Design and Analysis of Algorithms | S.Sridhar                                 | Oxford<br>Unioversity Press | 2014 |
| 5     | Introduction to Algorithms        | Thomas<br>H.Cormen,Charles<br>E.Leiserson | Prentice-Hall               | 1989 |

#### **OPERATING SYSTEMS CONCEPTS**

| COURSE CODE | 24CA5103O | MODE | OL | LTPS | 3-1-0-0 | PRE-      | NIL |
|-------------|-----------|------|----|------|---------|-----------|-----|
|             |           |      |    |      |         | REQUISITE |     |

| CO.No | Course Outcome                                  | BTL | PO  |
|-------|-------------------------------------------------|-----|-----|
| CO1   | Discuss Operating System Functionalities, Types | 2   | PO1 |
|       | of Operating Systems, Computer Architecture     |     |     |
|       | support to Operating Systems.                   |     |     |
| CO2   | Explain the Process and CPU scheduling.         | 2   | PO1 |
| CO3   | Demonstrate Process Synchronization, and        | 3   | PO2 |
|       | Deadlocks                                       |     |     |
| CO4   | Illustrate Memory management, Fragmentation     | 3   | PO2 |
|       | and File systems.                               |     |     |

| Module 1 | What is an OS, Brief history, Functionalities of OS, Basics Computer System Architecture overview. Operating System Structures, Types of Different OS, Basic Oss: Batch, Multiprogrammed batch, Timesharing, Real-Time OS (RTOS), Distributed OS.                                                                                                                                                                                                                             |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Module 2 | Processes: Definition, Process States, 5 state model, Process structure: PCB and components, Interprocess Communication, Operations on Processes, Threads, CPU Scheduling: I/O burst cycle, Context Switching, Short Term, Long Term and Scheduling Criteria, Algorithms: First Come First Serve, Shortest Job First, Priority Scheduling, Round Robin.                                                                                                                       |
| Module 3 | Process Synchronization: Critical Section Problem, Mutual Exclusion, Races, Semaphores, Classic Synchronization Problems, Readers/Writers, Dining Philosophers. Deadlocks: Deadlocks and Starvation, System Model, Necessary Conditions for a deadlock, Mutual Exclusion, Hold and Wait, No Pre-emption, Circular wait, Resource Allocation Graphs, Handling Deadlocks, Prevention, Avoidance, Bankers Algorithm I/O Device Management, I/O Device Types and Characteristics. |
| Module 4 | Memory Management: Swapping, Multiple Partition-First Fit-Best Fit-Worst Fit, RAID and Data Redundancy. Fragmentation: Internal and External Fragmentation, Paging and Demand Paging, Page Replacement, Page Replacement Algorithms: FIFO, Be lady's, anomaly, Optimal, LRU, MFT, Thrashing. File-System: File-System structure, Access Methods, Directory structure, File-System Implementation, Protection.                                                                 |

### **Reference Books:**

| Sl | Title                        | Author(s)                  | Publisher       | Year |
|----|------------------------------|----------------------------|-----------------|------|
| No |                              |                            |                 |      |
| 1  | Modern Operating Systems     | Andrew S. Tanenbaum,       | Pearson         | 2014 |
|    |                              | Herbert Bos                | Education       |      |
| 2  | Operating Systems: Internals | William Stallings          | Pearson         | 2017 |
|    | and Design Principles        |                            | Education       |      |
| 3  | Linux Kernel Development     | Robert Love                | Addison-Wesley  | 2010 |
|    |                              |                            | Professiona     |      |
| 4  | Windows Internals            | Mark Russinovich, David A. | Microsoft Press | 2012 |
|    |                              | Solomon, Alex Ionescu      |                 |      |

DATABASE SYSTEMS(DBS)

| COURSE | 24CA5104O | MODE | OL | LTPS | 3-0-2-4 | PRE-      | NIL |
|--------|-----------|------|----|------|---------|-----------|-----|
| CODE   |           |      |    |      |         | REQUISITE |     |

#### **Course Outcomes**

| CO# | CO Description                                                                                                                   | BTL | PO Mapping   |
|-----|----------------------------------------------------------------------------------------------------------------------------------|-----|--------------|
| CO1 | Illustrate the functional components of DBMS and Design an ER Model for a database.                                              | 2   | PO1,PO2,PO3  |
| CO2 | Design a relational model for a database & Implement SQL concepts and relational algebra.                                        | 3   | PO1,PO2,PO3  |
| CO3 | Implement PL/SQL programs, normalization techniques, indexing to construct and access database                                   | 4   | PO1,PO3      |
| CO4 | Analyse the importance of transaction Processing, concurrency control and recovery techniques.                                   | 4   | PO1,PO3      |
| CO5 | Choose the MangoDB to perform CURD, Indexing, Aggregation, Replication, Sharding, Performance analysis for distributed Databases | 5   | PO1,PO3, PO5 |
| CO6 | Choose a MongoDB and implement SQL queries and PL/SQL programs to do various operations on data.                                 | 5   | PO1,PO3, PO5 |

### **Syllabus**

| Module 1 | Database Fundamentals: DBMS Characteristics & Advantages, Database Environment, Database Users, Database Architecture, Data Independence, Languages, Tools and Interface in DBMS, DBMS types. Data Modeling: ER Model, Notation used in ER Diagram, Constraint, Types, Relationships in ER Model and other considerations in designing ER diagram. Enhanced, ER data Model, EER Diagram                                                                                                                                   |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Module 2 | Relational Model: concepts, constraints, schemas, ER to Relational Model. SQL & Relational Algebra: Data Definition and other languages in SQL, Creating tables and Data types, Constraints, DML statements, Functions and writing SQL statements using nested sub queries, complex queries, joining relations, views, compound statements, user defined functions, user defined procedures, cursors, Triggers, Relational Algebra: Operators in relational algebra, Database Design: Guidelines for good database design |
| Module 3 | Normalization- Normal Forms, First, Second, Third Normal Forms, BCNF, Multi value and join dependencies, 4th and 5th normal forms. Decomposition algorithms for normalization. File and Storage Structures: File storage, Index structures, Indexing and hashing, Query processing and optimization.                                                                                                                                                                                                                      |
| Module 4 | Transaction Management: Transaction processing issues, Transaction states, problems during multiple transactions processing, ACID properties, system log and concurrency control Techniques: Lock based techniques, and Timestamp based techniques, Multiversion based Techniques. Recovery Techniques: Recovery concepts, shadow paging, ARIES                                                                                                                                                                           |

| S1 | Title | Author(s) | Publisher | Year | l |
|----|-------|-----------|-----------|------|---|
| No |       | 9         |           |      | J |

| 1 | Database System        |                                               | tata mcgraw hill  | 2009 |
|---|------------------------|-----------------------------------------------|-------------------|------|
|   | Concepts               | Abraham Silberschatz, Yale University Henry,  | books             |      |
|   |                        | F. Korth Lehigh University, S. Sudarshan      |                   |      |
|   |                        | Indian Institute of Technology, Bombay.       |                   |      |
| 2 | Fundamentals of        | RamezElmasri, University of Texas at          | Pearson           | 2010 |
|   | Database Systems       | Arlington, Shamkant B. Navathe, University of |                   |      |
|   |                        | Texas at Arlington.                           |                   |      |
| 3 | An Introduction to     | Bipin C. Desai                                |                   | 2010 |
|   | Database Systems       |                                               | Galgotia          |      |
|   |                        |                                               | Publications Pvt  |      |
|   |                        |                                               | Ltd               |      |
| 4 | Principles of Database |                                               | Galgotia          | 1980 |
|   | Systems                | Jeffrey D. Ullman                             | Publications      |      |
|   |                        | •                                             |                   |      |
| 5 |                        | Raghu RamaKrishnan, Johannes Gehrke           | Tata McGraw Hill, | 1996 |
|   | Database Management    | -                                             | 2014.             |      |
|   | Systems                |                                               |                   |      |
|   | •                      |                                               |                   |      |

### **OBJECT ORIENTED PROGRAMMING**

| COURSE CODE | 23CA5205O | MODE | OL | LTPS | 3-0-2-4 | PRE-      | NIL |
|-------------|-----------|------|----|------|---------|-----------|-----|
|             |           |      |    |      |         | REQUISITE |     |
|             |           |      |    |      |         |           |     |

### **Course Outcomes**

| CO# | CO Description                                    | BTL | PO Mapping |
|-----|---------------------------------------------------|-----|------------|
| CO1 | Understanding the basic OOP concepts              | 2   | PO1        |
| CO2 | Apply concepts of inheritance, Exception Handling | 2   | PO1        |
| CO3 | Analyse and Implement interfaces, Packages        | 3   | PO2        |
| CO4 | Analyse Multi-Threading and Collections           | 4   | PO1        |
| CO5 | Analyse java Swings and data base connections     | 5   | PO5        |
| CO6 | Solve various problem using oops techniques       | 5   | PO5        |

| Module 1 | Introduction, Principles of Object-Oriented Languages, Applications of OOP,            |
|----------|----------------------------------------------------------------------------------------|
|          | Programming Constructs, Data Types, Operators, Classes and Objects - classes, Objects, |
|          | Creating Objects, Types of Objects, Passing Objects and passing array of Objects,      |
|          | Methods, constructors - Constructor overloading, cleaning up unused objects -Garbage   |
|          | collector, Class variable and Methods -Static keyword, this keyword, Arrays,           |

| Module 2 | Inheritance: Types of Inheritance, Deriving classes using extends keyword, Method overloading, super keyword, final keyword, Abstract class. Interfaces, Packages and Enumeration: Interface -Extending interface, Interface Vs Abstract classes, Packages -Creating packages, using Packages, Access protection, java. Lang package. Exceptions & Assertions – Introduction, Exception handling techniques -try catch, throw, throws, finally block, user defined exception, Exception Encapsulation and Enrichment, Assertions |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Module 3 | Multi-Threading: java.lang.Thread, The main Thread, Creation of new threads, Thread priority, Multithreading - Using isAlive () and join (), Synchronization, suspending and Resuming threads, Communication between Threads Input/Output: reading and writing data, java.io package, Collections Framework overview, Collection classes- Array List, LinkedList, HashSet. The For-Each loop Mapclass: HashMap                                                                                                                   |
| Module 4 | Swing: Introduction, JFrame, JPanel, Components in swings, Layout Managers, JList and JScroll Pane, Split Pane, JTabbedPane, Dialog Box Pluggable Look and Feel. Introduction to JDBC, Database Connectivity, JDBC Architecture, JDBC Drivers, JDBC API,Statement interface,ResultSet interface,PreparedStatement interface,Store & retrieve image,file.                                                                                                                                                                         |

| Sl No | Title                                | Author(s)          | Publisher         | Year |
|-------|--------------------------------------|--------------------|-------------------|------|
| 1     | Java the Complete Reference          | Herbert Schild     | Oracle Press      | 2010 |
|       |                                      | n v n · · ·        |                   | 2011 |
| 2     | Java for Programmers, P.J.Deitel and |                    | PHI               | 2011 |
|       | H.M.Deitel, PEA (or) Java: How to    | and H.M.Deite      |                   |      |
|       | Program,                             |                    |                   |      |
| 3     | Programming in Java                  | S. Malhotra and S. | Oxford            | 2008 |
|       |                                      | Choudhary          | UniversitiesPress |      |
| 4     | Thinking in Java                     | Bruce Eckel        | PE                | 2007 |
|       |                                      |                    |                   |      |
| 5     | Design Patterns Erich Gamma          | Richard Helm,      | PE                | 2010 |
|       |                                      | Ralph Johnson and  |                   |      |
|       |                                      | John Vlissides     |                   |      |

### **DATAANALYTICS(DA)**

| COURSE CODE | 24CA5206O | MODE | OL | LTPS | 3-0-2-0 | PRE-      | Nil |
|-------------|-----------|------|----|------|---------|-----------|-----|
|             |           |      |    |      |         | REQUISITE |     |

#### **Course Outcomes**

| CO# | CO Description                                                              | BTL | PO Mapping |
|-----|-----------------------------------------------------------------------------|-----|------------|
| CO1 | Summarize the importance and environment of R Programming                   | 2   | PO1,PO2    |
| CO2 | Experiment with basic control and functions in R                            | 3   | PO2,PO3    |
| CO3 | Examine the function of datastructures in R                                 | 4   | PO2,PO3    |
| CO4 | Inference data analysis pattern suing Statistics and Data visualization     | 4   | PO2, PO4   |
| CO5 | Experiment with pattern detection and data analytics function with data set | 4   | PO2,PO5    |
| CO6 | Examine statistical, data structures and data frame manipulation            | 4   | PO2,PO5    |

| Module 1 | Introduction to Data Analytics: What are Data Analytics? – Why Data Analytics? , Data basics: Quantitative data: Nominal data, Ordinal data. What is R? – Why R? – Advantages of R over Other Programming Languages - R Studio: R command Prompt, R script file, comments – Handling Packages in R: Installing a R Package, Important commands to get started: installed. package (), package Description (), help(), find. package (), library () - Input and Output – Entering Data from keyboard – Printing fewer digits or more digits.                                                                                                                                                                                                                                                                                                                                                               |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Module 2 | R Data Types: Vectors, Lists, Matrices, Arrays, Factors, Variables: Variable assignment, Data types of Variable, Finding Variable, Deleting Variables. R- Operators: Arithmetic Operators, Relational Operators, Logical Operator, Assignment Operators, Miscellaneous Operators - R Decision Making: if statement, if – else statement, if – else if statement, switch statement – R Loops: repeat loop, while loop, for loop – Loop control statement: break statement, next statement. R-Function: function definition, Built in functions: mean(), paste(), sum(), min(), max(),seq(), user-defined function, calling a function, R-Strings – Manipulating Text in Data: substr(),strsplit(), paste(), grep(), toupper(), tolower()                                                                                                                                                                   |
| Module 3 | R Vectors – Sequence vector, rep function, vector access, vector names, vector math, R List - Creating a List, Add/Delete Element to or from a List, Size of List, Merging Lists, Matrix Computations: Addition, subtraction, Multiplication and Division- R Arrays: Accessing Array Elements, Calculation Across Array Elements - R Factors –creating factors, generating factor levels. Basics in Statistics: Descriptive and Inferential, Sample and Population. Data Frames – Create Data Frame, Data Frame Access, Understanding Data in Data Frames: dim(), nrow(), ncol(), str(), Summary(), names(), head(), tail(), edit() functions - Extract Data from Data Frame, Expand Data Frame: Add Column, Add Row - Joining columns and rows in a Data frame rbind() and cbind() – Merging Data frames merge(),                                                                                        |
| Module 4 | Descriptive Statistics: Data Causation, Spotting Problems in Data with Visualization: visually Checking distributions for a single Variable - R –Pie Charts: Pie Chart title and Colors – Slice Percentages and Chart Legend, 3D Pie Chart – R Histograms – Density Plot - R – BarCharts: Bar Chart Labels, Title and Colors.Loading and handling Data in R: Getting and Setting the Working Directory – getwd(),setwd(), dir() - R-CSV Files - Input as a CSV file, Reading a CSV File, Analyzing the CSV File: summary(), min(), max(), range(), mean(), median(), apply() - Writing into a CSV File –R -Excel File – Reading the Excel file. Range, Frequencies, Mode, Mean and Median: Mean Applying Trim Option, Applying NA Option, Median - Mode – Summation, Variance, Standard Deviation, Analyzing a sample, The Normal Distribution, Skewness, Central Limit Theorem, Outlier. Correlation and |

| Sl No | Title                       | Author(s)                             | Publisher             | Year |
|-------|-----------------------------|---------------------------------------|-----------------------|------|
| 1     | R Programming for Beginners | Sandip Rakshit                        | Mcgraw hill Education | 2017 |
|       |                             |                                       | -                     |      |
| 2     | Data Analytics using R      | Seema Acharya                         | McGrawHill Education  | 2018 |
|       |                             | •                                     |                       |      |
| 3     | R for Dummies               | Andrie de Vries, JorisMeys            | John Wiley and Sons   | 2015 |
|       |                             | , , , , , , , , , , , , , , , , , , , | •                     |      |

### ${\bf COMPREHENSIVE\ SOFTWARE\ ENGINEERING} (CSE)$

| COURSE CODE | 24CA5207O | MODE | OL | LTPS | 2-1-0-0 | PRE-      | NIL |
|-------------|-----------|------|----|------|---------|-----------|-----|
|             |           |      |    |      |         | REQUISITE |     |

#### **Course Outcomes**

| CO# | CO Description                                               | BTL | PO Mapping |
|-----|--------------------------------------------------------------|-----|------------|
| CO1 | Understand Fundamentals Object Oriented Software Engineering | 2   | PO1        |
| CO2 | Design UML diagrams for Echo Systems                         | 3   | PO4        |
| CO3 | Design and apply software architectures                      | 3   | PO3        |
| CO4 | Analyze software testing and software process models         | 3   | PO3        |

### **Syllabus**

| Module 1 | Software and Software Engineering, Nature of software, software application domains, unique nature of web applications, software engineering, software process, software engineering practice, SDLC, software myths.                                                                                                                                                                                                                                                                                                                                                |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Module 2 | Process Models: Generic process model, prescriptive process models, specialized process models, unified process, personal and team process models, product and process.                                                                                                                                                                                                                                                                                                                                                                                             |
| Module 3 | Reverse Engineering, Agile Development, Agile manifesto and principles, Extreme programming, Scrum, Feature Driven Development (FDD), Lean Software Development (LSD), Requirements Engineering, Requirements classification, Requirements modeling approaches, SRS and User Stories, Analysis to Design, Coupling and Cohesion, Refactoring Design Concepts, Design Principles, Software architecture, architectural styles, Use cases, Classes, Relationships, common Mechanisms and their diagrams. Interfaces, Modeling techniques for Class & Object Diagrams. |
| Module 4 | Behavioral Modeling: Interaction diagrams. Activity Diagrams. Software testing & reliability, A strategic approach to software testing, test strategies for conventional software, Black-Box and White-Box testing, Testing methods, The Human and The Computer, Golden Rules, user interface analysis and design, interface analysis, interface design steps. Software Process Improvement, Software Quality Assurance: Six Sigma & the CMMI.                                                                                                                      |

| S1 | Title                                  | Author(s)           | Publisher         | Year |
|----|----------------------------------------|---------------------|-------------------|------|
| No |                                        |                     |                   |      |
| 1  | Object Oriented Software Engineering:  | Timothy C           | Mc Graw Hill      |      |
|    | Practical Software Development using   | Lethbridge &        |                   |      |
|    | UML and Java.                          | Robert, Langaneire, |                   |      |
| 2  | The Unified Modeling Language User     | Grady Booch,        | Addison-Wesley    |      |
|    | Guide                                  | James Rumbaugh      |                   |      |
|    |                                        | and Ivar Jacobson   |                   |      |
| 3  | Software Engineering; A Practitioner's | Roger SPressman     |                   |      |
|    | Approach                               |                     |                   |      |
| 4  | Object-Oriented Software Engineering:  | Bernd Bruegge and   | 2nd Edition,      |      |
|    | Using UML, Patterns and Java           | Allen H. Dutoit     | Pearson Education |      |

### WEB TECHNOLOGIES (WT)

| COURSE CODE | 24CA6108O | MODE | OL | LTPS | 3-0-2-4 | PRE-      | NIL |
|-------------|-----------|------|----|------|---------|-----------|-----|
|             |           |      |    |      |         | REQUISITE |     |

### **Course Outcomes**

| CO# | CO Description                                                                                           | BTL | PO Mapping |
|-----|----------------------------------------------------------------------------------------------------------|-----|------------|
| CO1 | illustrate the basic concepts of HTML and CSS & apply those concepts to design static web pages          | 2   | PO1        |
| CO2 | Identify and understand various concepts related to dynamic web pages and validate them using JavaScript | 2   | PO1        |
| CO3 | Apply the concepts of Extensible markup language                                                         | 3   | PO2        |
| CO4 | Examine web Applications using Scripting Languages & Frameworks                                          | 4   | PO1        |
| CO5 | Create and deploy secure, usable database driven web applications using PHP                              | 5   | PO5        |
| CO6 | Design Dynamic Web Pages by using HTML, CSS, JS, PHP                                                     | 5   | PO5        |

| Module 1 | Introduction to Web Technology: HTML: Basic Syntax, Standard HTML Document Structure, Basic Text Markup, Html styles, Elements, Attributes, Heading, Layouts, Html media, I frames Images, Hypertext Links, Lists, Tables, Forms, GET and POST method, HTML 5 Dynamic HTML. CSS: Cascading style sheets, Levels of Style Sheets, Style Specification Formats, Selector Forms, The Box Model, Conflict Resolution, CSS3. |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Module 2 | Introduction to JavaScript: Objects, Primitives Operations and Expressions, Control Statements, Arrays, Functions, Constructors, Pattern Matching using Regular Expressions, Fundamentals of Angular JS and NODE JS Introduction to XML: Syntax of XML, Document Structure, Document type definition, Namespaces, XML Schemas, Document Object model, Presenting XML, Using XML Processors: DOM and SAX.                |
| Module 3 | Introduction to PHP: Overview of PHP, general server characteristics, Creating PHP Pages, Form handling, Data Base access with PHP & MySQL. Web Servers- IIS (XAMPP, LAMP) and Tomcat Servers.                                                                                                                                                                                                                          |
| Module 4 | Java Web Technologies-Introduction to Servlet, Life cycle of Servlet, Servlet methods, Java Server Pages. Database connectivity – Servlets, JSP, PHP, Practice of SQL Queries. Web development frameworks – Introduction to Ruby, Ruby Scripting, Ruby on rails –Design, Implementation and Maintenance aspects.                                                                                                        |

| Sl | Title                                                | Author(s)                   | Publisher            | Year |
|----|------------------------------------------------------|-----------------------------|----------------------|------|
| No |                                                      |                             |                      |      |
| 1  | Programming the World Wide Web 7th Edition           | Robet W Sebesta             | Pearson              | 2013 |
| 2  | Web Technologies, 1st Edition 7th impression         | Uttam K Roy                 | Oxford               | 2012 |
| 3  | Java Script & jQuery the missing manual, 3rd Edition | David sawyer<br>McFarland   | O'Reilly             | 2014 |
| 4  | Web Hosting for Dummies, 1st Edition                 | Peter Pollock               | John Wiley &<br>Sons | 2013 |
| 5  | RESTful web services, 1st Edition                    | Leonard<br>Richardson, Ruby | O'Reilly             | 2007 |

### ESSENTIALS OF RESEARCH DESIGN (ERD)

| COURSE CODE | 24IE5201O | MODE | OL | LTPS | 1-1-0-0 | PRE-      | Nil |
|-------------|-----------|------|----|------|---------|-----------|-----|
|             |           |      |    |      |         | REQUISITE |     |

### **Course Outcomes**

| CO# | CO Description                                                                                        | BTL | PO Mapping |
|-----|-------------------------------------------------------------------------------------------------------|-----|------------|
| CO1 | Illustrate Research objects, steps involved in research and articulate appropriate Research Questions | 3   | PO1        |
| CO2 | Perform Literature Review in a Scholarly style and apply appropriate methods for Data collection      | 3   | PO2        |
| CO3 | Represent the data in tabular/Graphical form and prepare data for analysis                            | 3   | PO2        |
| CO4 | Perform statistical modelling and analysis to optimize the data, prepare the data for publishing.     | 4   | PO2        |

| Module 1 | Definition and objectives of Research-Types of research, Various Steps in Research      |  |  |  |
|----------|-----------------------------------------------------------------------------------------|--|--|--|
|          | process, Applied Mathematical tools for analysis, developing a research question-       |  |  |  |
|          | Choice of a problem, Literature review, Surveying, Synthesizing, critical analysis,     |  |  |  |
|          | reading materials, reviewing, rethinking, critical evaluation, interpretation, Research |  |  |  |
|          | Purposes, Ethics in research – APA Ethics code.                                         |  |  |  |
| Module 2 | Literature Review (LR)-Meaning and its Types-Narrative and Systematic, LR using         |  |  |  |
|          | Web of Science, Google and Google Scholar, Citations-Types, referencing in              |  |  |  |
|          | academic writing, Citation vs Referencing Vs Bibliography, Citation tools- Zotero,      |  |  |  |
|          | Qualitative Research and its methods, Quantitative Research, and its Methods. Data      |  |  |  |
|          | Collection-Primary data collection using Questionnaire, Google forms, survey            |  |  |  |

|          | monkey, Testing the validity and Reliability of Questionnaire using Factor Analysis and Cronbach's Alpha respectively, Secondary data-sources.                                                                                                                                                                                                                                                                                                          |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Module 3 | Diagrammatic and graphical presentation of data: Diagrams and Graphs of frequency data of one variable- histogram, barcharts-simple, sub-divided and multiple; line charts, Diagrams and Graphs of frequency data of two variables -scatter plot, preparing data for analysis. Concepts of Correlation and Regression, Fundamentals of Time Series Analysis and Error Analysis.                                                                         |
| Module 4 | Analyzing data using one-dimensional statistics, two-dimensional statistics and multidimensional statistics. Technical Writing and Publishing, Conference presentations, Poster Presentations, Plagiarism-check and tools, Self-Plagiarism. Structure and Components of Research Report, Types of Report, Layout of Research Report, Mechanism of writing a research report, Design Thinking for Contextualized Problem-Solving and Empathetic Research |

| S1 | Title                               | Author(s)        | Publisher | Year |
|----|-------------------------------------|------------------|-----------|------|
| No |                                     |                  |           |      |
| 1  | Research Methods for Engineers      | C.R. Kothari     |           |      |
|    |                                     |                  |           |      |
| 2  | Engineering Research Methodology    | y Krishnan       |           |      |
|    |                                     | Nallaperumal     |           |      |
| 3  | Engineering Research Methodology -A | Dipankar Deb and |           |      |
|    | Practical Insight for Researchers   | Balas            |           |      |

### SYLLABUS OF COURSES UNDER

#### PROFESSIONAL ELECTIVE

### APPLIED MACHINE LEARNING(AML)

| COURSE CODE | 24CA52A1O | MODE | OL | LTPS | 3-0-2-4 | PRE-      | NIL |
|-------------|-----------|------|----|------|---------|-----------|-----|
|             |           |      |    |      |         | REQUISITE |     |

#### **Course Outcomes**

| CO# | CO Description                                                                                                            | BTL | PO Mapping  |
|-----|---------------------------------------------------------------------------------------------------------------------------|-----|-------------|
| CO1 | Demonstrate the types of machine learning model representation and Supervised Learning- Simple Linear Regression Analysis | 2   | PO1,PO2,PO3 |
| CO2 | Implementing Multiple Regression model for supervised learning                                                            | 3   | PO1,PO2,PO3 |
| CO3 | Experimenting Multiple Linear Regression model                                                                            | 3   | PO3,PO4,PO5 |
| CO4 | Estimating various Regression coefficient                                                                                 | 4   | PO3,PO4,PO7 |
| CO5 | Evaluate applications using linear regression techniques                                                                  | 5   | PO4,PO5,PO7 |
| CO6 | Developing Solutions for the real-world problems using Python programming.                                                | 5   | PO4,PO5,PO7 |

| Module 1 | Introduction to Machine Learning Algorithms: Introduction to Machine learning —Statistical Learning —types of Machine Learning —learning models: geometric, probabilistic and logistic models, introduction to supervised, unsupervised and reinforcement learning — model evaluation —model implementation —model accuracy indicators.  Supervised Learning —Simple Linear Regression Analysis: Introduction to parametric machine learning method, assumptions of parametric machine learning methods, linear model and its assumptions, simple linear regression, scatter diagram, Simple linear Regression parameter estimation, properties of regression parameters, testing the significance of regression parameters |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Module 2 | Supervised Learning –Multiple Linear Regression Analysis I .Multiple linear regression model, assumptions of Multiple linear regression variables –multicollinearity, homoscedasticity, autocorrelation, effects of multicollinearity, effect of homoscedasticity and auto autocorrelation in parameter estimation, Least -Squares Estimation of the Regression Coefficients, Geometrical Interpretation of Least Squares, Properties of the Least -Squares Estimators, Estimation of $\sigma 2$ , Inadequacy of Scatter Diagrams in Multiple Regression                                                                                                                                                                    |
| Module 3 | Supervised Learning –Multiple Linear Regression Analysis II: testing the general linear hypothesis, Test for Significance of Regression, Tests on Individual Regression Coefficients and Subsets of Coefficients, Special Case of Orthogonal Columns in X, Confidence Intervals on the Regression Coefficients, CI Estimation of the Mean Response, Simultaneous Confidence Intervals on Regression Coefficients, predicting new observations, residual analysis, model adequacy and validation.                                                                                                                                                                                                                            |
| Module 4 | Supervised Learning –Non Linear Regression Analysis Introduction to non-linear regression models, non-linear least square method to estimating the regression parameters, transformation of non-linear model to linear model, linearization, other parameter estimation methods, starting values, statistical inference in non-linear regression                                                                                                                                                                                                                                                                                                                                                                            |

| S1 | Title                             | Author(s)         | Publisher       | Year          |
|----|-----------------------------------|-------------------|-----------------|---------------|
| No |                                   |                   |                 |               |
| 1  |                                   | DOUGLAS C.        |                 |               |
|    |                                   | MONTGOMERY,       |                 |               |
|    |                                   | ELIZABETH A.      | A JOHN          |               |
|    |                                   | PECK, G.          | WILEY &         |               |
|    | Introduction to Linear Regression | GEOFFREY          | SONS, INC.,     | Sixth         |
|    | Analysis                          | VINING            | PUBLICATION     | Edition, 2021 |
| 2  |                                   |                   |                 |               |
|    | Introduction to Machine Learning  | EthemAlpaydm      | MIT Press       | Third, 2014   |
| 3  |                                   |                   | PACKT           |               |
|    | Python Machine Learning           | Sebastian Raschka | Publishing      | Second        |
| 4  |                                   | Barbara G.        |                 |               |
|    |                                   | Tabachnick, Linda | Pearson         |               |
|    | Using Multivariate Statistics     | S. Fidell         | Education Inc   | Sixth         |
| 5  | Introduction to machine learning  |                   |                 |               |
|    | with Python                       | Andreas Muller    | Shroff/O'Reilly | First         |

### CLOUD COMPUTING (CC)

| COURSE | 24CA52C1O | MODE | OL | I TDC | 2024    | PRE-      | NIL |
|--------|-----------|------|----|-------|---------|-----------|-----|
| CODE:  | 24CA32C10 | MODE |    | LIFS  | 3-0-2-4 | REQUISITE | NIL |

### **Course Outcomes**

| CO#  | CO Description                                                                                                        | PO<br>Mapping | BTL |
|------|-----------------------------------------------------------------------------------------------------------------------|---------------|-----|
| CO 1 | Ability to explain various concepts, architectures and deployment models relating to the cloud computing technologies | PO1           | 2   |
| CO 2 | Know the fundamentals of cloud, cloud Architectures and types of services in cloud                                    | PO1           | 2   |
| CO 3 | Understand the concept of virtualization and how this has enabled the development of Cloud Computing                  | PO2           | 3   |
| CO 4 | Design different sample applications using IaaS, PaaS and SaaS deployment Model                                       | PO2           | 3   |
| CO 5 | Develop application programs using different platforms and languages                                                  | PO4           | 5   |
| CO6  | Interpret and Learn the Concept of Advanced Cloud Technologies and Cloud Databases                                    | PO4           | 5   |

|          | roduction to Cloud Computing: meaning of Cloud Computing, variations of cloud             |
|----------|-------------------------------------------------------------------------------------------|
|          | computing from other models, Essential Characteristics, Cloud computing Architectures,    |
|          | Technological Influences. Cloud Computing Architecture, the three-deployment model's      |
| Madula 1 | IaaS, PaaS, SaaS, and Types of clouds (Public, Private and Hybrid)                        |
| Module 1 | OUD INFRASTRUCTURE: Architectural Design of Compute and Storage Clouds –                  |
|          | Layered Cloud Architecture Development – Design Challenges - Inter Cloud Resource         |
|          | Management – Resource Provisioning and Platform Deployment – Global Exchange of           |
|          | Cloud Resources.                                                                          |
|          | rvice Models (XaaS): Infrastructure as a Service (IaaS), Platform as a Service (PaaS),    |
|          | Software as a Service (SaaS);                                                             |
| Module 2 | ployment Models: Public cloud, Private cloud, Hybrid cloud, Community cloud.              |
| Module 2 | Establishing and using a private cloud: Network topology, HW-SE specification, installing |
|          | open stack, configuring open stack availing services through open stacks, establishing    |
|          | virtual networks.                                                                         |
|          | rastructure as a Service (IaaS): Introduction to IaaS, IaaS definition, Introduction to   |
|          | virtualization, Different approaches to virtualization, Hypervisors, Machine Image, and   |
| Module 3 | Virtual Machine (VM).                                                                     |
| Module 3 | source Virtualization: Server, Storage, Network, Virtual Machine (resource) provisioning  |
|          | and manageability, Storage as a service, Examples Applications: Amazon EC2, Google        |
|          | Drive, one drive, drop box. Developing applications Using IaaS.                           |
|          | tform as a Service (PaaS): Introduction to PaaS: What is PaaS, Service Oriented           |
|          | Architecture (SOA), Cloud Platform and Management, Computation, Storage, Examples,        |
| Module 4 | Google App Engine, Microsoft Azure, SalesForce.com's Force.com platforms. Developing      |
|          | applications using PaaS.                                                                  |
|          | ftware as a Service (SaaS): Introduction to SaaS, Web services, Web 2.0, Web OS, and      |
|          | Case Study on SaaS. Provisioning, scheduling and requesting VM that is identified with    |
|          | 17                                                                                        |

desired software packages. Development of Application software using the system software installed on the Virtual Machine. Developing Applications that use SaaS.

### **Reference Books:**

| S No | Title                                                            | Author(s)                                | Publisher           | Year |
|------|------------------------------------------------------------------|------------------------------------------|---------------------|------|
| 1    | Cloud Computing                                                  | Kris Jamsa                               | Wiley India Pvt Ltd | 2012 |
| 2    | Cloud Security: A comprehensive Guide to Secure Cloud Computing. | Krutz, Ronald L.; Vines,<br>Russell Dean | Wiley India Pvt Ltd | 2010 |
| 3    | Cloud Computing Bible,                                           | Barrie Sosinsky                          | Wiley India         | 2011 |

#### CYBER SECURITY AND ETHICAL HACKING

| COURSE | 24CA52S1O | MODE | OL | LTPS | 3-0-2-4 | PRE-      | NIL |
|--------|-----------|------|----|------|---------|-----------|-----|
| CODE   |           |      |    |      |         | REQUISITE |     |

| CO# | CO Description                                                                | BTL | PO Mapping |
|-----|-------------------------------------------------------------------------------|-----|------------|
| CO1 | Understand the need for cyber security                                        | 2   | PO1        |
| CO2 | Analyse various types of security threats and electronic payment systems      | 4   | PO3, PO4   |
| CO3 | Analyse the security issues involved in developing secure information systems | 4   | PO3, PO4   |
| CO4 | Compare different ethical hacking methods                                     | 5   | PO3, PO4   |
| CO5 | Analyse various cyber security threats                                        | 4   | PO4,PO5    |
| CO6 | Compare different ethical hacking methods and tools                           | 5   | PO4,PO5    |

| Module 1 | Introduction to information systems, Types of information Systems, Development of Information Systems, Introduction to information security, Need for Information security, Threats to Information Systems, Information Assurance, Cyber Security, and Security Risk Analysis.                                                                                                                                                                                                                                                                                                                                                                                              |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Module 2 | Application security (Database, E-mail and Internet), Data Security Considerations-Backups, Archival Storage and Disposal of Data, Security Technology-Firewall and VPNs, Intrusion Detection, Access Control. Security Threats -Viruses, Worms, Trojan Horse, Bombs, Trapdoors, Spoofs, E-mail viruses, Macro viruses, Malicious Software, Network and Denial of Services Attack, Security Threats to E-Commerce Electronic Payment System, e- Cash, Credit/Debit Cards.                                                                                                                                                                                                   |
| Module 3 | Digital Signature, public Key Cryptography. Developing Secure Information Systems, Application Development Security, Information Security Governance & Risk Management, Security Architecture & Design Security Issues in Hardware, Data Storage & Downloadable Devices, Physical Security of IT Assets, Access Control, CCTV and intrusion Detection Systems, Backup Security Measures.                                                                                                                                                                                                                                                                                    |
| Module 4 | Introduction to Ethical Hacking: Hacking Methodology, Process of Malicious Hacking, Foot printing and Scanning: Foot printing, Scanning. Enumeration: Enumeration. System Web and Network Hacking: SQL Injection, Hacking Wireless Networking, Viruses, Worms and Physical Security: Viruses and Worms, Physical Security. Linux Hacking: Linux Hacking. Evading IDS and Firewalls: Evading IDS and Firewalls Report writing & Mitigation: Introduction to Report Writing & Mitigation, requirements for low level reporting & high level reporting of Penetration testing results, Demonstration of vulnerabilities and Mitigation of issues identified including tracking |

| S1 | Title                           | Author(s)              | Publisher        | Year |
|----|---------------------------------|------------------------|------------------|------|
| No |                                 |                        |                  |      |
| 1  | "Analysing Computer Security"   | Charles P. Pfleeger,   | Pearson          | 2012 |
|    |                                 | Shari Lawerance        | Education India. |      |
|    |                                 | Pfleeger,              |                  |      |
| 2  | "Cryptography and information   | V.K. Pachghare         | PHI Learning     | 2004 |
|    | Security"                       |                        | Private Limited, |      |
|    |                                 |                        | Delhi            |      |
| 3  | "Introduction to Information    | Dr. Surya Prakash      | Willey           | 2008 |
|    | Security and Cyber Law"         | Tripathi, Ritendra     | Dreamtech Press  |      |
|    |                                 | Goyal, Praveen kumar   |                  |      |
|    |                                 | Shukla                 |                  |      |
| 4  | " Information Assurance for the | Schou, Shoemaker       | Tata McGraw      | 2006 |
|    | Enterprise"                     |                        | Hill             |      |
| 5  | Hacking Exposed 7th Edition     | Stuart McClure, Joel   | Tata McGraw      | 2009 |
|    |                                 | Scambray, George Kurtz | Hill             |      |

### **PATTERN RECOGNITION (PR)**

| COURSE CODE | 24CA52A2O | MODE | OL | LTPS | 3-0-0-0 | PRE-      | NIL |
|-------------|-----------|------|----|------|---------|-----------|-----|
|             |           |      |    |      |         | REQUISITE |     |

#### **Course Outcomes**

| CO# | CO Description                                                            | BTL | PO Mapping |
|-----|---------------------------------------------------------------------------|-----|------------|
| CO1 | Understand basic concepts in pattern recognition.                         | 2   | PO2        |
| CO2 | Understanding Generative Learning Models.                                 | 2   | PO3,PO2    |
| CO3 | Understand Structured pattern recognition and Neural pattern recognition. | 2   | P02        |
| CO4 | Apply pattern recognition techniques in practical problems.               | 3   | PO2        |

## Syllabus

| Module 1 | Introduction and general pattern recognition: Pattern Recognition (PR), Pattern Recognition Approaches, Examples of PR |
|----------|------------------------------------------------------------------------------------------------------------------------|
|          | Applications, Pattern Recognition Extensions. Statistical pattern recognition: Introduction,                           |
|          | Supervised, Parametric Approaches, Unsupervised                                                                        |
|          | Approaches                                                                                                             |
| Module 2 | Bayes Classifier: Bayes Theorem, Minimum Error Rate Classifier, Estimation of Probabilities                            |
|          | Comparison with the NNC, Naive                                                                                         |
|          | Bayes Classifier. Hidden Markov Models: Markov Models for Classification, Hidden Markov                                |
|          | Models, HMM Parameters, Learning HMMs,                                                                                 |
|          | Classification Using HMMs.                                                                                             |
| Module 3 | classification of Test Patterns. Syntactic (structural) pattern recognition & NN Classifiers:                          |
|          | Introduction, Structural                                                                                               |
|          | Analysis Using Constraint Satisfaction and Structural Matching, The Formal Language-based                              |
|          | Approach, Learning/Training in the Language-                                                                           |
|          | based Approach. Nearest Neighbour Based Classifiers: Nearest Neighbour Algorithm,                                      |
|          | Variants of the NN Algorithm, Use of the Nearest                                                                       |
|          | Neighbour Algorithm for Transaction Databases, Minimal Distance Classifier (MDC).                                      |
| Module 4 | Applications of Pattern Recognition: Fingerprinting,                                                                   |
|          | cursive characteristic recognition, Biometrics, Rice inspection, Food quality analysis.                                |

| S1 | Title                               | Author(s)          | Publisher      | Year |
|----|-------------------------------------|--------------------|----------------|------|
| No |                                     |                    |                |      |
| 1  | Introduction to Statistical Pattern | Fukunaga           | Academic Press |      |
|    | Recognition                         |                    |                |      |
| 2  | Pattern Recognition and             | M.Narasimha        | Universities   | 2011 |
|    | Machine learning"                   | Murty, V. Susheela | Press (India)  |      |
|    |                                     | Dev                | Pvt. Ltd       |      |
| 3  | "Pattern Classification",           | R. O. Duda, P. E.  | 2nd edition,   | 2000 |
|    |                                     | Hart, and D. G.    | Wiley-         |      |
|    |                                     | Stork,             | Interscience.  |      |
| 4  | Pattern Recognition and             | . M. Bishop,       | Springe        | 2006 |
|    | Machine learning                    | 22                 |                |      |

### **HADOOP AND BIG DATA (HBD)**

| COURSE CODE | 24CA52D2O | MO | О | LTPS | 3-0-0-0 | PRE-      | NIL |
|-------------|-----------|----|---|------|---------|-----------|-----|
|             |           | DE | L |      |         | REQUISITE |     |

### **Course Outcomes**

| CO# | CO Description                                                                                                                         | BTL | PO Mapping  |
|-----|----------------------------------------------------------------------------------------------------------------------------------------|-----|-------------|
| CO1 | understand how to store and maintain of Big Data                                                                                       | 2   | PO1         |
| CO2 | understand architecture and ecosystem of Hadoop & Outline Processing and Storage Layer of Hadoop, internal concept of Map Reduce, YARN | 2,3 | PO2         |
| CO3 | understand architecture of Spark and Outline Core components in Spark                                                                  | 2,3 | PO2         |
| CO4 | Apply Hadoop plus Spark for achieving Big Data Analytics                                                                               | 4   | PO3,PO4,PO5 |

### Syllabus

| Module 1 | Understanding Big Data: Definition of Big Data, Types of Big Data, How Big data being Generated, Different source of Big Data Generation, Rate at which Big Data is being generated, Different V's, How single person is contributing towards Big Data, Significance for Big Data, Reason for Big Data, Understanding RDBMS and why it is failing to store Big Data, Future of Big Data, Maintenance/storage of Big data, Big Data use cases for major IT Industries                       |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Module 2 | Introduction to Hadoop: What is Hadoop, Apache Community, History of Hadoop, How is Hadoop Important, Apache Hadoop Ecosystem, Hadoop Architecture, Difference between Hadoop 1.x,2.x and 3.x Architecture, Master- Slave Architecture, Advantages of Hadoop. HDFS and its features, Map Reduce and its features, Map Reduce V1 vs Map Reduce V2, Hadoop YARN-job scheduling in YARN, storage options in HADOOP – File Formats & Compression Formats, Encryption, and User Authentication. |
| Module 3 | Introduction to Spark: What is Spark, history of Spark, Theoretical concepts in Spark – Resilient distributed datasets, Directed acyclic graphs, Spark Context, Spark Data Frames, Actions and Transformations, Spark deployment options, Spark APIs. Core Components in Spark – Spark Core, Spark SQL, Spark Streaming, GraphX, MLib. The Architecture of Spark.                                                                                                                          |
| Module 4 | Big Data Analytics with Hadoop plus Spark: Limitations of Hadoop, Overcoming limitations of Hadoop, Spark solutions, spark practical on big data analytics, Hadoop Practical on Big data analytics, Hadoop vs Spark, Why Hadoop plus Spark – Hadoop features, Spark features. Installing Hadoop plus Spark Clusters.                                                                                                                                                                       |

| Sl No | Title                              | Author(s)                                                                                             | Publisher        | Year |
|-------|------------------------------------|-------------------------------------------------------------------------------------------------------|------------------|------|
| 1     | Practical Big Data Analytics       | Nataraj Dasgupta                                                                                      | Packt Publishing | 2018 |
| 2     | Big Data Analytics                 | Venkat Ankam                                                                                          | Packt Publishing | 2016 |
| 3     | Big Data Analytics with Hadoop 3.0 | Sridhar Alla                                                                                          | Packt Publishing | 2018 |
| 4     | Hadoop: The Definitive Guide       | Tom White                                                                                             | O'REILLY         | 2015 |
| 5     | Hadoop for Dummies                 | Dirk deRoos, Paul C.<br>Zikopoulos, Bruce Brown,<br>Rafael Coss, and Roman B.<br>Melnyk <sub>23</sub> | A Wiley brand    | 2014 |

### **CLOUD INFORMATION SECURITY (CIS)**

| COURSE CODE | 24CA52C2O | MODE | OL | LTPS | 3-0-0-0 | PRE-      | NIL |
|-------------|-----------|------|----|------|---------|-----------|-----|
|             |           |      |    |      |         | REQUISITE |     |

#### **Course Outcomes**

| CO# | CO Description                                                                                                                 | BTL | PO Mapping |
|-----|--------------------------------------------------------------------------------------------------------------------------------|-----|------------|
| CO1 | Explain the basic concepts of cloud computing, virtualization, and the importance of Information Security in the Cloud Context | 2   | PO1, PO2   |
| CO2 | Discuss various vulnerabilities, controls, and protocols in the cloud                                                          | 2   | PO3, PO1   |
| CO3 | Classify the cloud vulnerabilities and threats                                                                                 | 3   | PO1, PO3   |
| CO4 | Outline how cloud and Security works in a seamless model                                                                       | 3   | PO1, PO3   |
| CO5 | Execute and perform cloud security measures                                                                                    | 5   | PO2, PO4   |

### Syllabus

| Module 1 | Introduction to Virtualization & Cloud: Virtualization and Cloud computing concepts, Private cloud Vs Public cloud, IAAS, PAAS & SAAS concepts, Virtualization security concerns, Hypervisor Security, Host/Platform Security, Security communications, Security between Guest instances, Security between Hosts and Guests. |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Module 2 | Cloud Controls Matrix & Top Cloud Threats: Introduction to Cloud Controls Matrix & Top Cloud Threats, Cloud Controls Matrix, Trusted Cloud Initiative architecture and reference model, requirements of Security as a Service (Secaas) model and Top Security threats to the cloud model.                                    |
| Module 3 | Cloud Security: Cloud Security vulnerabilities and mitigating controls, Cloud Trust Protocol, Cloud Controls Matrix. Complete Certificate of Cloud Security Knowledge (CCSK).                                                                                                                                                |
| Module 4 | Cloud Trust Protocol &Transparency: Introduction to Cloud Trust Protocol & Transparency, Cloud Trust Protocol and Transparency, Transparency as a Service, Concepts, Security, Privacy & Compliance aspects of cloud.                                                                                                        |

| Sl | Title                                                                 | Author(s)                                   | Publisher                 | Year |
|----|-----------------------------------------------------------------------|---------------------------------------------|---------------------------|------|
| No |                                                                       |                                             |                           |      |
| 1  | "Cloud Security – A comprehensive<br>Guide to Secure Cloud Computing" | Ronald L. Krutz<br>and Russel Dean<br>Vines | Wiley<br>Publishing, Inc. | 2010 |
| 2  | "Cloud Computing Explained"                                           | John Rhoton                                 | Recursive<br>Limited      | 2009 |

| 3 | "Cloud Computing - A Practical      | Anthony T Velte,  | McGraw Hill    | 2010 |
|---|-------------------------------------|-------------------|----------------|------|
|   | Approach"                           | Toby J Velte and  |                |      |
|   |                                     | Robert Elsenpeter |                |      |
| 4 | "Cloud Security and Privacy: An     | Tim Mather, Subra | O'Reilly Media | 2009 |
|   | Enterprise Perspective on Risks and | Kumaraswamy, and  |                |      |
|   | Compliance"                         | Shahed Latif      |                |      |

### **CYBER FORENSICS** < (CFS)>

| COURSE | 24CA52S2O | MODE | OL | LTPS | 3-0-0-0 | PRE-      | NIL |
|--------|-----------|------|----|------|---------|-----------|-----|
| CODE   |           |      |    |      |         | REQUISITE |     |

### **Course Outcomes**

| CO# | CO Description                                                          | BTL | PO Mapping   |
|-----|-------------------------------------------------------------------------|-----|--------------|
| CO1 | Understand Forensic Science and Recovery methods                        | 2   | PO1, PO2     |
| CO2 | Analyse Digital Evidence, Network Forensics and Mobile Device Forensics | 4   | PO2, PO3     |
| CO3 | Analyse Web Forensics and Email Forensics                               | 4   | PO2,PO3, PO4 |
| CO4 | Analyse the security policies, standards and cyber laws                 | 4   | PO3, PO4     |

### Syllabus

| Module 1 | Computer Forensics: Introduction to Computer Forensics, Forms of Cyber Crime, First Responder Procedure- Non-technical staff, Technical Staff, Forensics Expert and Computer Investigation procedure, Case Studies Storage Devices & Data Recover Methods: Data Acquisition, Data deletion and data recovery method and techniques, volatile data analysis, Case Studies                                                                                                                                                            |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Module 2 | Forensics Techniques I: Windows forensic, Linux Forensics, Network forensics – sources of network-based evidence, other basic technical fundamentals, Network forensic investigative strategies, technical aspects, statistical flow analysis, packet analysis, forensics of wireless networks, network intrusion detection analysis, event log aggregation and correlation analysis, switches, routers and firewalls, Case Studies, Mobile Forensics – data extraction & analysis, Steganography, Password cracking, Case Studies. |
| Module 3 | Forensics Techniques II: Cross-drive analysis, Live analysis, deleted files, stochastic forensics, Dictionary attack, Rainbow attack, Email Tacking – Header option of SMTP, POP3, IMAP, examining browsers, Case Studies                                                                                                                                                                                                                                                                                                           |
| Module 4 | Cyber Law: Corporate espionage, digital evidences handling procedure, Chain of custody, Main features of Indian IT Act 2008 (Amendment), Case Studies, Incident specific procedures.                                                                                                                                                                                                                                                                                                                                                |

| S1 | Title | Author(s) | Publisher | Year |
|----|-------|-----------|-----------|------|
| No |       |           |           |      |

| 1 | Computer Forensics: Computer Crime                           | John Vacca                    | Laxmi            | 2015 |
|---|--------------------------------------------------------------|-------------------------------|------------------|------|
|   | Scene Investigation                                          |                               | Publications     |      |
| 2 | Digital Forensic: The Fascinating World of Digital Evidences | Nilakshi Jain                 | Wiley            | 2016 |
| 3 | Hacking Exposed Computer Forensics                           | Aaron Philipp,<br>David Cowen | McGraw Hill      | 2009 |
| 4 | Mastering Mobile Forensics                                   | SoufianeTahiri                | Packt Publishing | 2016 |
| 5 | Computer Forensics: A Beginners<br>Guide                     | David Cowen                   | McGraw Hill      | 2013 |

### COMPUTER VISION (CV)

| COURSE CODE | 24CA61A3O | MODE | OL | LTPS | 3-0-2-4 | PRE-REQUISITE | NIL |
|-------------|-----------|------|----|------|---------|---------------|-----|
|             |           |      |    |      |         |               |     |

### **Course Outcomes**

| CO# | CO Description                                                                                                             | BTL | PO Mapping |
|-----|----------------------------------------------------------------------------------------------------------------------------|-----|------------|
| CO1 | Illustrate the need for image transformations and modeling, different types of image transformation, and their properties. | 2   | PO1,PO4    |
| CO2 | Apply the techniques and transformation methods for image enhancement and image restoration.                               | 3   | PO1,PO2    |
| CO3 | Demonstrate image processing algorithms to perform feature detection, matching, segmentation and recognition.              | 4   | PO1,PO2    |
| CO4 | Apply and analyze NN, ML, and DL algorithms for image transformation, pose consistency, and segmentation.                  | 4   | PO5,PO1    |
| CO5 | Analysis and study of image processing and machine learning algorithm for computer vision                                  | 5   | PO5        |

| Module 1 | Introduction to Computer vision: 2D and 3D transformation, Co-vectors, Stretch/Squash, Planar    |
|----------|--------------------------------------------------------------------------------------------------|
|          | surface flow, Bilinear Interpolant. 3D rotations,                                                |
|          |                                                                                                  |
|          | 3D to 2D projections: Orthography and para perspective, Pin hole Camera Model, Camera Intrinsic  |
|          | Image sensing pipeline, sampling, and aliasing.                                                  |
| Module 2 | Linear Filtering: 1D and 2D convolution, Separable altering, Examples off linear filters (Moving |
|          | average/ Box filter, Bilinear, Gaussian, Sobel, Corner Filter), Bandpass and steerable filters:  |
|          | applicant of gaussian filter, Nonlinear filters: Median filter, Bilateral filter, Binary Image   |
|          | processing, Morphology, Fourier Transforms, DCT, Applications sharpening, blur and noise         |
|          |                                                                                                  |
|          | removal, interpolation, Decimation, multi resolution, Image pyramids.                            |
| Module 3 | Boundary Detection: Fitting Lines and Curves, Active Contours, Hough Transform, Generalized      |
|          | Hough Transform, SIFT Detector: Interest Points, Detecting Blobs, SIFT Detector, SIFT            |
|          | Descriptor, SURF Features.                                                                       |
|          | 26                                                                                               |

Module 4 Image Stitching: Image transformations (2x2 &3x3), Computing Holography, Dealing with Outliers: RANSAC, Face Detection: Uses of Face Detection, Haar Features for Face Detection, Integral Image, Nearest Neighbour Classifier, Support Vector Machines., Perception: Object tracking, Image Segmentation, Appearance Matching, Deep Learning Architecture for Computer Vision Applications: Convolutional neural networks, ImageNet Dataset, YOLO, VGG16/19, RESNET, EfficientNet, U-NET.

#### **Reference Books:**

| Sl No | Title                                                                | Author(s)         | Publisher                   | Year |
|-------|----------------------------------------------------------------------|-------------------|-----------------------------|------|
| 1     | Perform basic Image Handling and Processing operations on the image. | 10000011 11110011 | Kickstarted<br>Publications | 2011 |
| 2     | Geometric Transformation, compute homography matrix                  | Razavan           | Klein                       | 2013 |
| 3     | Edge detection, Line Detection and Corner Detection                  | Mohamed AEi-sayed | Lambert                     | 2012 |
| 4     | Image classification using SVM                                       | Ramon amayan      | Rupa publications           | 2010 |
| 5     | Image classification using SVM                                       | Mario Amado       | Bloomsbury                  | 2019 |

#### DATA VISUALIZATION TECHNIQUES <DV>

| COURSE | 24CA61D3O | MODE | OL | LTPS | 3-0-2-4 | PRE-      | NIL |
|--------|-----------|------|----|------|---------|-----------|-----|
| CODE   |           |      |    |      |         | REQUISITE |     |

| CO# | CO Description                                                                                                                          | BTL | PO Mapping  |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------|-----|-------------|
| CO1 | Understand the brief history of data visualization, its importance, and the challenges involved in visualizing data                     | 2   | PO1         |
|     |                                                                                                                                         |     |             |
| CO2 | Apply static graphical techniques such as bar graphs to represent data, including grouping bars, customizing colors, sizes, titles, and | 3   | PO2,PO4     |
|     | axis units                                                                                                                              |     |             |
| CO3 | Analyze multivariate statistical visual representations, such as dendrograms, scree plots, QQ plots, and PP plots.                      | 4   | PO2,PO3,PO4 |
| CO4 | Examine the visualizations by adding annotations such as text, mathematical expressions, lines, arrows, shaded shapes, and error bars.  | 4   | PO4,PO5     |

| CO5 | Hands-on practice creating basic bar graphs, grouping bars,         | 3 | PO1,PO2,PO5 |
|-----|---------------------------------------------------------------------|---|-------------|
|     | customizing color, size, and title, adding labels, and applying bar |   |             |
|     | graphs in business scenarios.                                       |   |             |
| CO6 | Practicing annotation techniques such as adding text, mathematical  | 4 | PO1,PO3,PO5 |
|     | expressions, lines, arrows, shaded shapes, and error bars.          |   |             |
|     | Modifying axes, including swapping x and y axes, changing scaling   |   |             |
|     | ratios, positioning tick marks and labels, adjusting the appearance |   |             |
|     | of axis labels, creating circular graphs, using themes, and         |   |             |
|     | manipulating legends.                                               |   |             |

| Module 1 | Introduction to Data Visualization: Brief history of data visualization, scientific design choices in data visualization- choice of graphical form, grammar of graphical techniques of large amount of data, crucial need of visualization techniques, challenges in visualization techniques, classification of visualization techniques for qualitative and quantitative data, power of visualization techniques.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Module 2 | Static Graphical Techniques – 1: Introduction to bar graph, basic understanding of making basic bar graph, grouping bars together, bar graphs on counts, customization of bar graphs by changing colour, size, title, axis units, changing width and spacing of the bar chart, adding labels to bar graph, application of bar graph in business.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Module 3 | Multivariate Graphical Techniques :Introduction to correlation matrix, application of correlation matrix in the multivariate analysis, network graph, basics of heat map, difference between heat map and tree map, introduction to higher dimensional scatter plot, axis adjustment in the higher dimensional scatter plot.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Module 4 | Graphical Validation: Basics of multivariate statistical visual representations and its results, dendrogram, importance of dendrogram in grouping (cluster analysis), Scree Plot, importance of Scree Plot, application of Scree Plot in determining number of clusters and factors, QQ plot, importance of QQ plot in distribution of data for the further quantitative analysis, PP plot, applications and usage of PP Plot for distribution detection. Customization: Introduction to annotations – adding: text, mathematical expression, lines, arrows, shaded shapes, highlighting the texts and items, adding error bars, introduction to axis, swapping x and y axis, changing the scaling ration in the axis, positioning of axis and arranging tick marks and labels, changing the appearance of axis labels, circular graphs, using themes, changing the appearance of theme elements, creating the own themes, legends: removing the legends, position of legends, legend title, labels in legends. |

| S1 | Title                                            | Author(s)  | Publisher               | Year |
|----|--------------------------------------------------|------------|-------------------------|------|
| No |                                                  |            |                         |      |
| 1  | Visualization Analysis and Design                | Munzner    | A K Peters/CRC<br>Press | 2014 |
| 2  | Information Visualization: Perception for Design | Colin Ware | Morgan<br>Kaufmann      | 2012 |
| 3  | Visualizing Data.                                | Ben Fry    | O'Reilly Media          | 2008 |

### MALWARE ANALYSIS (MA)

| COURSE CODE | 24CA61S3O | MODE | OL | LTPS | 3-0-2-4 | PRE-      | NIL |
|-------------|-----------|------|----|------|---------|-----------|-----|
|             |           |      |    |      |         | REQUISITE |     |

### **Course Outcomes**

| CO# | CO Description                                                                                                                          | BTL | PO Mapping |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------|-----|------------|
| CO1 | Illustrate the Goals of Malware Analysis and Creating fake networks                                                                     | 2   | PO1,PO4    |
| CO2 | Demonstrate the usage of virtual machines in the context of malware analysis.                                                           | 2   | PO1,PO2    |
| CO3 | Apply the concept of exception handling in the context of malware analysis. How can it be used to identify and analyze malware activity | 3   | PO1,PO2    |
| CO4 | Develop a plan for analyzing malware persistence mechanisms                                                                             | 3   | PO5,PO1    |
| CO5 | Evaluate malware analysis programs web servers and password cracking                                                                    | 5   | PO5        |

| Madula 1 | Cools of Molyans Analysis AV Cooping Hashing Finding Strings Desking and                    |
|----------|---------------------------------------------------------------------------------------------|
| Module 1 | Goals of Malware Analysis, AV Scanning, Hashing, Finding Strings, Packing and               |
|          | Obfuscation, PE file format, Static, Linked Libraries and Functions, Static Analysis tools, |
|          | Virtual Machines and their usage in malware analysis, Sandboxing, Basic dynamic analysis,   |
|          | Malware execution, Process Monitoring, Viewing processes, Registry snapshots, Creating      |
|          | fake networks                                                                               |
| Module 2 | X86 Architecture- Main Memory, Instructions, Opcodes and Endianness, Operands,              |
|          | Registers, Simple Instructions, The Stack, Conditionals, Branching, Rep Instructions,       |
|          | Disassembly, Global and local variables, Ari thematic operations, Loops, Function Call      |
|          | Conventions, C Main Method and Offsets. Portable Executable File Format, The PE File        |
|          | Headers and Sections, IDA Pro, Function analysis, Graphing, The Structure of a Virtual      |
|          | Machine, Analysing Windows programs, Anti-static analysis techniques, obfuscate             |
| Module 3 | Live malware analysis, dead malware analysis, analysing traces of malware, system calls,    |
|          | Api calls, registries, network activities'-dynamic analysis techniques, VM detection        |
|          | techniques, Evasion techniques, , Malware Sandbox, Monitoring with Process Monitor,         |
|          | Packet Sniffing with Wireshark, Kernel vs. User-Mode Debugging, OllyDbg, Breakpoints,       |
|          | Tracing, Exception Handling, Patching                                                       |
| Module 4 | Downloaders and Launchers, Backdoors, Credential Stealers, Persistence Mechanisms,          |
|          | Handles, Mutexes, Privilege Escalation, Covert malware launching- Launchers, Process        |
|          | Injection, Process Replacement, Hook Injection, Detours, Coinfection, YARA rule based       |
|          | detection.                                                                                  |
|          |                                                                                             |

| Sly | Title                                | Author(s)           | Publisher       | Year |
|-----|--------------------------------------|---------------------|-----------------|------|
| No  |                                      |                     |                 |      |
| 1   | "Practical Malware Analysis: The     | Michael Sikorski    | No Starch Press | 2017 |
|     | Hands-On Guide to Dissecting         | and Andrew Honig    |                 |      |
|     | Malicious Software""                 |                     |                 |      |
| 2   | "The Art of Memory Forensics:        | Michael Hale Ligh,  | Willey          | 2012 |
|     | Detecting Malware and Threats in     | Andrew Case,        |                 |      |
|     | Windows, Linux, and Mac Memory"      | Jamie Levy, and     |                 |      |
|     | ·                                    | Aaron Walters       |                 |      |
| 3   | "Malware Analyst's Cookbook and      | Michael Hale Ligh,  | Willey          | 2012 |
|     | DVD: Tools and Techniques for        | Steven Adair, Blake |                 |      |
|     | Fighting Malicious Code"             | Hartstein, and      |                 |      |
|     |                                      | Matthew Richard     |                 |      |
| 4   | "Practical Reverse Engineering: x86, | Bruce Dang,         | Willey          | 2019 |
|     | x64, ARM, Windows Kernel,            | Alexandre Gazet,    | •               |      |
|     | Reversing Tools, and Obfuscation"    | and Elias           |                 |      |
|     |                                      | Bachaalany          |                 |      |
| 5   | "Black Hat Python: Python            | Justin Seitz        | No Starch Press | 2011 |
|     | Programming for Hackers and          |                     |                 |      |
|     | Pentesters"                          |                     |                 |      |

#### APPLIED DEEP LEARNING (ADL)

| COURSE | 24CA61A | MOD | OL | LTPS | 3-0-0- | PRE-      | NIL |
|--------|---------|-----|----|------|--------|-----------|-----|
| CODE   | 4O      | Е   |    |      | 0      | REQUISITE |     |

### **Course Outcomes**

| CO# | CO Description                                                                                                                                          | BTL | PO Mapping     |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----------------|
| CO1 | Describe the fundamental concepts of deep learning, including<br>neural networks, activation functions, loss functions, and<br>optimization techniques. | 3   | PO1, PO2, PO5. |
| CO2 | Apply deep learning frameworks such as TensorFlow or PyTorch to develop and implement deep learning models.                                             | 2   | PO2, PO3,.     |
| CO3 | Apply deep learning techniques to image classification, object detection, and natural language processing tasks                                         | 3   | PO1, PO2, PO5  |
| CO4 | Apply Generative Adversarial Networks (GANs) for image and text generation.                                                                             | 3   | PO1, PO2, PO5  |

| Module 1 | Introduction to Deep Learning: Overview of machine learning and deep learning Neural |
|----------|--------------------------------------------------------------------------------------|
|          | networks and their components Activation functions, loss functions, and optimization |
|          | Training deep neural networks                                                        |

| Module 2 | Convolutional Neural Networks (CNNs): Fundamentals of image data and preprocessing Building and training CNNs Applications of CNNs (e.g., image classification, object detection) Recurrent Neural Networks (RNNs): Sequence data and time series analysis Building and training RNNs Applications of RNNs (e.g., natural language processing, speech recognition)                            |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Module 3 | Transfer Learning and Pretrained Models: Transfer learning techniques, Fine-tuning pretrained models, Reinforcement learning and its applications Explainable AI and model interpretability, Ethical considerations in deep learning. Natural Language Processing (NLP) and Transformers: Introduction to NLP Transformers architecture for NLP tasks Fine-tuning pre-trained language models |
| Module 4 | Generative Adversarial Networks (GANs): Introduction to GANs Training GANs for image generation Applications of GANs (e.g., image synthesis) Deploying Deep Learning Models: Model deployment methods (e.g., cloud, edge devices) Model optimization and inference speed Model version control and updates                                                                                    |

| S1 | Title                                                                      | Author(s)                                           | Publisher            | Year          |
|----|----------------------------------------------------------------------------|-----------------------------------------------------|----------------------|---------------|
| No |                                                                            |                                                     |                      |               |
| 1  | "Deep Learning"                                                            | Ian Goodfellow, Yoshua Bengio, and Aaron Courville. | MIT press            | 2016          |
| 2  | "Deep Learning for Computer Vision"                                        | Rajalingappaa Shanmugamani.                         | Packt<br>Publishing. | 2018          |
| 3  | "Hands-On Machine<br>Learning with Scikit-Learn,<br>Keras, and TensorFlow" | Aurélien Géron.                                     | O'Reilly Media       | 2nd<br>(2019) |

### STATISTICS FOR DATASCIENCE

| COURSE CODE | 24CA61D4O | MODE | OL | LTPS | 3-0-0-0 | PRE-      | NIL |
|-------------|-----------|------|----|------|---------|-----------|-----|
|             |           |      |    |      |         | REQUISITE |     |

### **Course Outcomes**

| CO# | CO Description                                                 | BTL | PO Mapping       |
|-----|----------------------------------------------------------------|-----|------------------|
| CO1 | Explain the basic concepts of statistics and explains the      | 2   | PO1,PO2,PO6      |
|     | various methods of descriptive data collection and analysis    |     |                  |
| CO2 | Show the probability distribution of a random variable, based  | 2   | PO1,PO2,PO6      |
|     | on real-world situation, and use it to compute expectation and |     |                  |
|     | variance                                                       |     |                  |
| CO3 | Construct the linear and non-linear regression lines for the   | 3   | PO2,PO3,PO6      |
|     | given data.                                                    |     |                  |
| CO4 | Apply basic concepts of statistics and explains the various    | 3   | PO2,PO3,PO4,PO6, |
|     | methods of descriptive data collection and analysis            |     |                  |

| Module 1 | Basic Statistics: Importance of Statistics-Primary and secondary data-Data collection     |
|----------|-------------------------------------------------------------------------------------------|
|          | methods Presentation of numerical and categorical data. Concepts of central tendency and  |
|          | dispersion-Mean, median and mode-Partition Values-Quartiles for grouped and ungrouped     |
|          | data-Range-Quartile Deviation-Standard deviation and coefficient of variation for grouped |
|          | and ungrouped data.                                                                       |

| Module 2 | Probability Distribution: Random Variable- Discrete Random and Continuous Random variable, Probability Distribution of a Random Variable, Mathematical Expectation Types: Binomial, Poisson, Normal Distribution, Mean and Variance of Binomial, Poisson, and Normal Distribution |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Module 3 |                                                                                                                                                                                                                                                                                   |
|          | Correlation: Introduction, Types, Properties, Methods of Correlation: Karl Pearson's                                                                                                                                                                                              |
|          | Coefficient of Correlation, concept of point biserial correlation, Rank Correlation and Phi-                                                                                                                                                                                      |
|          | coefficient. Regression: Introduction, Aim of Regression Analysis, Types of Regression                                                                                                                                                                                            |
|          | Analysis, Lines of Regression, Properties of Regression Coefficient and Regression Lines,                                                                                                                                                                                         |
|          | Comparison with Correlation                                                                                                                                                                                                                                                       |
| Module 4 | Working on Statistical data with Ms-Excel: Working with Data using MS-Excel, Importing                                                                                                                                                                                            |
|          | Data Sort, Data Filter, Advance Filter, Data Validation, Data Consolidation, What-If                                                                                                                                                                                              |
|          | Analysis, Data Grouping, Subtotal, Data regression, Working with function; statistical                                                                                                                                                                                            |
|          | functions. Index numbers-Laspeyere-Passche-Fisher's price and quantity index numbers                                                                                                                                                                                              |
|          | Time reversal and factor reversal tests.                                                                                                                                                                                                                                          |

| S1 | Title                                                   | Author(s)                                               | Publisher                    | Year |
|----|---------------------------------------------------------|---------------------------------------------------------|------------------------------|------|
| No |                                                         |                                                         |                              |      |
| 1  | Probability and Statistics for Engineers and Scientists | Ronald E. Walpole,<br>Sharon L. Myers<br>and Keying Ye, | Pearson-8ed                  | 2017 |
| 2  | Fundamentals of Business Statistics                     | Sharma J.k.                                             | Vikas<br>Publishing<br>House | 2019 |
| 3  | A textbook of probability and statistics                | B. Sooryanarayana:                                      | S. Chand 2003                | 2003 |

### CLOUD AND SERVERLESS COMPUTING(CSC)

| COURSE CODE | 23CA61C4O | MODE | OL | LTPS | 3-0-0-0 | PRE-      | NIL |
|-------------|-----------|------|----|------|---------|-----------|-----|
|             |           |      |    |      |         | REQUISITE |     |

| CO# | CO Description                                                                                | BTL | PO Mapping    |
|-----|-----------------------------------------------------------------------------------------------|-----|---------------|
| CO1 | Understand the concepts of Cloud Serverless Computing                                         | 2   | PO1, PO2, PO5 |
| CO2 | Organize the Serverless cloud Architecture                                                    | 3   | PO1, PO2, PO5 |
| CO3 | Experiment with the appropriate methodologies of testing and debugging serverless functions   | 3   | PO1, PO2, PO5 |
| CO4 | Implement knowledge representation using Event-driven Programming in Serverless Architectures | 3   | PO1, PO2, PO5 |

| Module 1 | Introduction to Cloud Serverless Computing, Overview of serverless computing, Benefits and drawbacks of serverless architecture, Comparison with traditional server-based approaches, Serverless platforms and providers |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Module 2 | Serverless Architecture, Serverless design patterns, Microservices and serverless, Scalability and elasticity in serverless environments, Data storage and management in serverless applications                         |
| Module 3 | Function-as-a-Service (FaaS),Introduction to FaaS platforms, Developing serverless functions, Managing dependencies and external integrations Testing and debugging serverless functions                                 |
| Module 4 | Event-driven Programming in Serverless Architectures, Understanding event-driven programming models, Event sources and triggers, Implementing event-driven workflows, Orchestration and choreography                     |

| Sl | Title                             | Author(s)     | Publisher    | Year                    |  |
|----|-----------------------------------|---------------|--------------|-------------------------|--|
| No |                                   | . ,           |              |                         |  |
| 1  | Serverless Architectures on AWS:  |               | DT Editorial | 1 <sup>st</sup> edition |  |
|    | With examples using AWS Lambda    | Peter Sbarski | Services     | (2017)                  |  |
| 2  |                                   |               | Packt        |                         |  |
|    | Building Serverless Web           |               | Publishing   | 1 <sup>st</sup> edition |  |
|    | Applications Paperback            | Diego Zanon   | Limited      | (2017)                  |  |
| 3  |                                   | Slobodan      |              |                         |  |
|    |                                   | Stojanovic,   |              |                         |  |
|    |                                   | Aleksandar    |              |                         |  |
|    |                                   | Simovic, and  |              |                         |  |
|    |                                   | Mladen        | Pearson      | 3 <sup>rd</sup> edition |  |
|    | Serverless Applications with Node | Macanovic     | Education    | (2017)                  |  |
| 4  | Practical AWS Lambda: Build and   |               |              |                         |  |
|    | Deploy Event-Driven Serverless    |               | Ingram short | 1 <sup>st</sup> edition |  |
|    | Applications                      | Yohan Wadia   | title        | (2017)                  |  |

## SECURITY GOVERNANCE AND MANAGEMENT(SGM)

| COURSE CODE | 24CA61S4O | MODE | OL | LTPS | 3-0-0-0 | PRE-      | NIL |
|-------------|-----------|------|----|------|---------|-----------|-----|
|             |           |      |    |      |         | REQUISITE |     |

### **Course Outcomes**

| CO# | CO Description                                                             | BTL | PO Mapping  |
|-----|----------------------------------------------------------------------------|-----|-------------|
| CO1 | Understand basic security for the system.                                  | 2   | PO1,PO2,PO3 |
| CO2 | Applying Security Governance Objectives to various organizations           | 3   | PO3         |
| CO3 | Applying Security Strategy ,Strategy Constraints to various organizations  | 3   | PO3         |
| CO4 | Applying Incident Management and Response Metrics to various organizations | 3   | PO4         |

### Syllabus

| Module 1 | Governance Overview—How Do We Do It? What Do We, Why Governance?,: Benefits of Good Governance, A Management Problem, Legal and Regulatory Requirements: Security Governance and Regulation, Roles and Responsibilities: The Board of Directors, Executive Management, Security Steering Committee, The CISO, CIA Model, User identity and Access Management: Authentication, Account Authorization, Validation, Access Control     |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Module 2 | Strategic Metrics: Governance Objectives, Information Security Outcomes: Defining Outcomes, Security Governance Objectives: Security Architecture, CobiT, Capability Maturity Model, ISO/IEC 27001/27002 63, Other Approaches, Risk Management Objectives: Risk Management Responsibilities, Managing Risk Appropriately, Determining Risk Management Objectives                                                                    |
| Module 3 | Current State: Current State of Security, Current State of Risk Management, Gap Analysis—Unmitigated Risk, Developing a Security Strategy: Failures of Strategy, Attributes of a Good Security Strategy Strategy Resources, Strategy Constraints, Sample Strategy Development: The Process, Implementing Strategy: Action Plan Intermediate Goals, Action Plan Metrics, Reengineering, Inadequate Performance, Elements of Strategy |
| Module 4 | Security Program Development Metrics: Information Security Program Development Metrics ,Program Development Operational Metrics ,Information Security Management Metrics: Management Metrics ,Security Management Decision Support Metrics ,CISO Decisions , Incident Management and Response Metrics: Incident Management Decision Support Metrics                                                                                 |

| Sl | Title                          | Author(s)    | Publisher | Year       |
|----|--------------------------------|--------------|-----------|------------|
| No |                                |              |           |            |
| 1  | INFORMATION SECURITY           | KRAG BROTBYA | WILEY     | 2009       |
|    | Governance: A Practical        |              |           |            |
|    | Development and Implementation |              |           |            |
|    | Approach                       |              |           |            |
|    | Information Systems Security:  |              |           |            |
| 2  | Security Management, Metrics,  | Nina Godbole | 2010      | ISC2 Press |
|    | Frameworks And Best Practices  | 34           |           |            |

| 3 | Information Security Risk Analysis | Thomas R. Peltier     | 3rd edition      | Auerbach, 2012                                  |
|---|------------------------------------|-----------------------|------------------|-------------------------------------------------|
| 4 | Principles of Information Security | Michael E.<br>Whitman | 5 edition (2015) | Cengage<br>Learning<br>India Private<br>Limited |

### APPLICATIONS OF NATURAL LANGUAGE **PROCESSING(ANLP)**

| COURSE | 24CA61A5O | Mode | О | LTP | 3-0-2-0 | PRE-REQUISITE | NIL |
|--------|-----------|------|---|-----|---------|---------------|-----|
| CODE   |           |      | L | S   |         |               |     |
|        |           |      |   |     |         |               |     |
|        |           |      |   |     |         |               |     |

| CO. No | Course Outcome                                                                     | PO/PSO | BTL |
|--------|------------------------------------------------------------------------------------|--------|-----|
| CO 1   | Understand approaches to syntax and semantics in NLP                               | PO1    | 2   |
| CO 2   | Apply the statistical estimation and statistical alignment models P                | PO2    | 3   |
| CO 3   | Analyze grammar formalism and context free grammars                                | PO2    | 3   |
| CO 4   | Apply Rule based Techniques, Statistical Machine translation (SMT), word alignment | ,PO1   | 3   |
| CO 5   | Evaluating NLP algorithms using python                                             | PO5    | 5   |

| Module 1 | "Overview of NLP. Statistical machine translation. Language models and their role in speech processing. The problem of ambiguity. NLP tasks in syntax, semantics, and pragmatics. Words: Structure, Semantics, Parts of Speech, Sentences: Basic ideas in compositional semantics, Classical Parsing (Bottom up, top down, Dynamic Programming: CYK parser). Sentences: Parsing using Probabilistic Context Free Grammars and EM based approaches for learning PCFG parameters. N-gram Language Models. "                                                                |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Module 2 | <b>Information Theory</b> : The role of language models. Simple N-gram models, Entropy, relative entropy, cross entropy. Statistical estimation and smoothing for language models. Part Of Speech Tagging and Sequence Labelling. Lexical syntax. Hidden Markov Models (Forward and Viterbi algorithms and EM training). n-gram models. Syntactic parsing: Grammar formalisms and treebanks. Efficient parsing for context-free grammars (CFGs). Statistical parsing and probabilistic CFGs (PCFGs). Top-down and bottom-up parsing, empty constituents, left recursion. |
| Module 3 | Modern Statistical Parsers Search methods in parsing: Agenda-based chart, A*, and "best-first" parsing. Dependency parsing. Discriminative parsing. Semantic Analysis: Lexical semantics and word-sense disambiguation. Discourse: Reference resolution and phenomena, syntactic and semantic constraints on Coreference, pronoun resolution algorithm, text coherence, discourse structure. Semantic Role Labelling and Semantic Parsing.                                                                                                                               |

| Module 4 | Information Extraction (IE): Named entity recognition and relation extraction. IE using sequence labelling. Information sources, rule-based methods, evaluation (recall, precision). Statistical Machine Translation (SMT), Alignment Models. Statistical Alignment Models and Expectation Maximization (EM) EM and its use in statistical MT alignment models. The EM algorithm. Machine Translation (MT): Basic issues in MT. Rule based Techniques, Statistical Machine translation (SMT), word alignment. |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Module 5 | Evaluating NLP algorithms using python                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

#### **Textbooks:**

- 1. An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition". Daniel Jurafsky and James H. Martin,
- 2. Natural language Understanding James A 2nd Edition Pearson Education.
- 3. Natural language processing: a Paninian perspective "Bharati A., Sangal R., Chaitanya V." 2000 Pearson Education.

#### Reference books:

- 1. Natural language processing and Information retrieval ". Siddiqui T., Tiwary U. S. " 2008
- 2. Foundations of Statistical Natural Language Processing Cambridge "Christopher D; Hinrich Schuetze" 1999 MIT Press

#### GRAPH AND WEB ANALYTICS> < (GWA)>

| COURSE CODE | 23CA61D5O | MODE | OL | LTPS | 3-0-2-0 | PRE-      | NIL |
|-------------|-----------|------|----|------|---------|-----------|-----|
|             |           |      |    |      |         | REQUISITE |     |
|             |           |      |    |      |         |           |     |

| CO# | CO Description                                                                                                                    | BTL | PO Mapping |
|-----|-----------------------------------------------------------------------------------------------------------------------------------|-----|------------|
| CO1 | Understand the importance of Bigdata on Graphs,<br>Network basics and Social networks                                             | 2   | PO1        |
| CO2 | Make use of Web Analytics – Data sources, tools, Web traffic data                                                                 | 3   | PO1,PO5    |
| CO3 | Analysing Web Analytics Strategy- website traffic analysis, audience identification and segmentation analysis, Emerging Analytics | 4   | PO1        |
| CO4 | Compare Email Testing Analysis, competitive Intelligence Analysis, and Social, Mobile, Video Analysis                             | 4   | PO1        |

| Web analytics | CO5 | Implementing Python programming for graph and web analytics | 4 | PO4,PO5,PO6 |
|---------------|-----|-------------------------------------------------------------|---|-------------|
|---------------|-----|-------------------------------------------------------------|---|-------------|

| M   | Graph Analytics: Origin of Graph Theory, Graph Basics, types of Graphs, Finding the best path,            |
|-----|-----------------------------------------------------------------------------------------------------------|
| od  | Dijkstra's Algorithm, operation on graphs. Network Basics: Types of Networks, Properties of               |
| ule | Networks, Network Measures, Matrices: Adjacency matrix                                                    |
| 1   | SocialNetworks:Propertiesofsocialnetwork,scaleFreeNetwork,SmallworldNetworks,NetworkNavigati              |
|     | on.Node_LevelAnalysis:Degree_centrality,closenesscentrality,betweenesscentrality,EigenvectorCentr         |
|     | ality,pagerank,GroupLevelAnalysis:Cohesive subgroups,cliques,clusteringcoefficient,triaSlice,K-           |
|     | Cores.CommunityDetection:Graph partitioning, Hierarchical clustering                                      |
| M   | Web Analytics: Introduction- State of the analytics union, state of the industry, Rethinking web          |
| od  | analytics, clickstream, multiple outcomes analysis, experimentation, imperative, tactical shift. Strategy |
| ule | for choosing the optimal analytics tool- vendor selection analysis, running an effective tool pilot,      |
| 2   | checking SLA's for web-analytics vendor contract. Clickstream analysis- Critical web metrics, visits      |
| -   | and visitors engagement, attributes of great metrics, strategically aligned tactics for impactful web     |
|     | metrics.                                                                                                  |
| M   | Web Traffic Data: Practical solutions- Sources of traffic, outcomes, foundational analytical strategies,  |
| od  | segmentation, benefits of and creating and app measuring the search quality, search engine optimization   |
|     |                                                                                                           |
| ule | analysis, google example, content coverage, indexing by search engines, paid search analysis, direct      |
| 3   | traffic analysis, email campaign analysis, campaign response, website behaviour, data Testing,            |
|     | actionable testing ideas.                                                                                 |
| M   | Component of Web Analytics Strategy: Competitive Intelligence Analysis- Data Sources, website             |
| od  | traffic analysis, search and keyword analysis, audience identification and segmentation analysis.         |
| ule | Emerging Analysis of the performance of Videos.                                                           |
| 4   |                                                                                                           |
|     |                                                                                                           |

#### **Text Books:**

| Sl | Title                                                                                  | Author(s)                          | Publisher           | Year |
|----|----------------------------------------------------------------------------------------|------------------------------------|---------------------|------|
| No |                                                                                        |                                    |                     |      |
| 1  | Python for graph and Network                                                           | Mohammad                           | Springer            | 2017 |
|    | Analysis                                                                               | Zuhair Al-Taie,<br>Seifedine Kadry | Publication         |      |
| 2  | Web Analytics 2.0: The Art of Online Accountability and Science of Customer Centricity | Avinash Kaushik                    | Sybex               | 2009 |
| 3  | Graph Analysis and Visualization                                                       | Richard Brath<br>David Jonker      | Willey<br>publisher | 2015 |
| 4  | Advanced Web Metrics with Google Analytics                                             | Brian Clifton                      | Syrex               | 2012 |
| 5  | A textbook of Graph theory                                                             | R.Balakrishnan<br>and              | Universitext        | 2012 |
|    |                                                                                        | K.Ranganathan                      |                     |      |

| Sl | Title                              | Author(s)         | Publisher | Year |
|----|------------------------------------|-------------------|-----------|------|
| No |                                    |                   |           |      |
| 1  | Michael Beasley, "Practical Web    | Morgan            | O'Reilly  | 2010 |
|    | Analytics for User Experience: How | Kaufmann, 2013 2. |           |      |
|    | Analytics can help you Understand  | Justin Cutroni    |           |      |
|    | your Users"                        |                   |           |      |

#### **CLOUD WEB SERVICES**

| COURSE CODE | 24CA61C5O | MODE | OL | LTPS | 3-0-2-0 | PRE-      | NIL |
|-------------|-----------|------|----|------|---------|-----------|-----|
|             |           |      |    |      |         | REQUISITE |     |

#### **Course Outcomes**

| CO# | CO Description                                               | BTL | PO Mapping   |
|-----|--------------------------------------------------------------|-----|--------------|
|     |                                                              | 2   | PO1,PO2,PO3  |
| CO1 | Summarize the model of Cloud Computing As A Service          |     |              |
|     |                                                              | 2   | PO1,PO2,PO3  |
| CO2 | Illustrate the Networking Basics required for cloud services |     |              |
|     |                                                              |     |              |
|     |                                                              | 3   | PO1,PO3      |
| CO3 | Demonstrate the Control of workflow in cloud services        |     |              |
|     |                                                              | 3   | PO1,PO3      |
| CO4 | Explain the method of fault tolerance in cloud               |     |              |
|     |                                                              | 3   | PO1,PO3, PO5 |
| CO5 | Experiment with the AWS Cloud                                |     |              |

### Syllabus

| Module 1 | Cloud Web concepts: Search engine, Apache Hadoop, Grid Computing, Amazon Web Services, REST APIs, SOAP API, Query API, User Authentication, Connecting to the Cloud, Open SSH Keys, Tunnelling/ Port Forwarding, Image (glance), Object Storage (swift), ACL, Logging, Signed URI, Compute (nova), Cloud value proportion, Cloud economics, cloud architecture and design principles, AWS Cloud basic services                                                  |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Module 2 | <b>Networking &amp; Storage:</b> Overview, Key pairs, Network Types, LAN, Gateways and Router, IP Classes and Subnets, CIDR, Utilities, Instances Management, Image Management, direct connect, hybrid deployments, VPN, Security groups, Block Storage (cinder), Ubuntu in the Cloud, Installation, Utilities, File system, basic concepts of storage and databases, various storage services, storage solutions, database services.                           |
| Module 3 | Global Infrastructure and Security: Methods of deploying and operating cloud, global infrastructure, availability zone, benefits of CloudFront and Edge locations. AWS Corer services, resources for technology support, methods for provisioning services, Benefits of shared responsibility model, layers of security, Multi Factor Authentication, Identity Access Management Security levels, security policies, benefits of compliance, security services. |

38

| Module 4 | Monitoring & Pricing: Approaches for monitoring, benefits of Cloud watch, CloudTrial,          |  |  |  |  |  |  |
|----------|------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
|          | Trust Advisor, Pricing and support model, free tire, benefits of organization and consolidated |  |  |  |  |  |  |
|          | billing, Budgets, Explorer, AWS pricing calculator, various AWS support plans, AWS             |  |  |  |  |  |  |
|          | market place.                                                                                  |  |  |  |  |  |  |
|          |                                                                                                |  |  |  |  |  |  |

| Sl | Title                              | Author(s)            | Publisher | Year |
|----|------------------------------------|----------------------|-----------|------|
| No |                                    |                      |           |      |
| 1  | Cloud Computing: Principles and    | RajkumarBuyya, James | Wiley     | 2011 |
|    | Paradigms                          | Broberg, Andrzej     |           |      |
|    |                                    | M. Goscinski         |           |      |
| 2  | OpenStack Essentials               | Dan Radez            | Wiley     | 2009 |
|    |                                    |                      |           |      |
| 3  | Cloud Computing: Concepts,         | Erl                  | Pearson   | 2009 |
|    | Technology and Architecture        |                      | Education |      |
| 4  | Resource Management in Utility and | Han Zhao,Xiaolin Li  | Springer  | 2013 |
|    | Cloud Computing                    |                      |           |      |

#### **CLOUD SECURITY**

| COURSE CODE | 24CA61S5O | MODE | OL | LTPS | 3-0-2-0 | PRE-      | Nil |
|-------------|-----------|------|----|------|---------|-----------|-----|
|             |           |      |    |      |         | REQUISITE |     |

### **Course Outcomes**

| CO# | CO Description                                             | BTL | PO Mapping        |
|-----|------------------------------------------------------------|-----|-------------------|
| CO1 | Explain Importance of Information Security in the Cloud    | 2   | PO1, PO2          |
|     | Context                                                    |     |                   |
| CO2 | Identify various concepts of cloud security                | 2   | PO1, PO2          |
|     |                                                            |     |                   |
| CO3 | Develop the cloud vulnerabilities and threats              | 3   | PO3,PO4,PO7       |
|     |                                                            |     |                   |
| CO4 | Construct how cloud and Security works in a seamless model | 3   | PO3,PO4,PO5, PO7, |
|     |                                                            |     |                   |
| CO5 | Practical                                                  | 5   | PO1, PO2, PO5     |
|     |                                                            |     |                   |

| Module 1 | Introduction to Virtualization & Cloud: Virtualization and Cloud computing concepts,     |
|----------|------------------------------------------------------------------------------------------|
|          | Private cloud Vs Public cloud, IAAS, PAAS & SAAS concepts, Virtualization security       |
|          | concerns, Hypervisor Security, Host/Platform Security, Security communications, Security |
|          | between Guest instances, Security between Hosts and Guests                               |
|          |                                                                                          |

| Module 2 | Cloud Controls Matrix &Top Cloud Threats: Introduction to Cloud Controls Matrix & Top Cloud Threats, Cloud Controls Matrix, Trusted Cloud Initiative architecture and reference model, requirements of Security as a Service (Secaas) model and Top Security threats to the cloud model |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Module 3 | Cloud Security: Cloud Security vulnerabilities and mitigating controls, Cloud Trust Protocol, Cloud Controls Matrix. Complete Certificate of Cloud Security Knowledge (CCSK).                                                                                                           |
| Module 4 | Cloud Trust Protocol &Transparency: Introduction to Cloud Trust Protocol & Transparency, Cloud Trust Protocol and Transparency, Transparency as a Service, Concepts, Security, Privacy & Compliance aspects of cloud.                                                                   |

| Sl | Title                                | Author(s)           | Publisher     | Year |
|----|--------------------------------------|---------------------|---------------|------|
| No |                                      |                     |               |      |
| 1  | Visible Ops Private Cloud – Andi     | John Rhoton 2009.   | Visible Ops   | 2011 |
|    | Mann, Kurt Miline and Jeanne Morain, |                     | Private Cloud |      |
|    | IT Process Institute.                |                     |               |      |
| 2  | Cloud Computing Bible                | Barrie Sosinsky     | Wiley         | 2011 |
|    |                                      |                     |               |      |
| 3  | Cloud Computing Explained            | John Rhoton         |               | 2011 |
|    |                                      |                     |               |      |
| 4  | Cloud Security and Privacy           | Tim Mather, Subra   |               | 2009 |
|    |                                      | Kumaraswamy, and    |               |      |
|    |                                      | Shahed Latif        |               |      |
| 5  | Cloud Security – A comprehensive     | Ronald L. Krutz and |               | 2009 |
|    | Guide to Secure Cloud Computing      | Russel Dean Vines   |               |      |